Corso di Meccanica Statistica - Compito del 9/7/2024 Proff. S. Caprara, I. Giardina e F. Sciortino

Si consideri un gas costituito da N particelle identiche, non interagenti, confinate nella regione di spazio $0 \le z \le L$, con hamiltoniana di singola particella.

$$\mathcal{H}(\vec{p}, \vec{r}) = cp + \gamma(x^2 + y^2),$$

dove $p \equiv |\vec{p}|$, \vec{r} è il vettore di componenti cartesiane x, y, z, nel sistema di riferimento assegnato, c e γ sono parametri dimensionali strettamente positivi. Il sistema è in equilibrio a temperatura T.

Nel caso di particella classiche:

- 1. [3 punti] Determinare l'energia interna per particella u.
- 2. [3 punti] Determinare la temperatura T_R alla quale la metà delle particelle si trova nella regione di spazio $\rho \equiv \sqrt{x^2 + y^2} \le R$.
- 3. [4 punti] Determinare la variazione di entropia per particella, Δs , se, alla temperatura T_R trovata al punto precedente, tutto il gas viene compresso fino ad essere confinato nella regione di spazio $\rho \equiv \sqrt{x^2 + y^2} \leq R$.

Nel caso di particelle quantistiche di spin S=0:

- 4. [3 punti] Determinare la temperatura di condensazione T_0 .
- 5. [4 punti] Determinare l'energia interna per particella, u, alla temperatura $T = \frac{1}{2}T_0$, in funzione di T_0 .
- 6. [3 punti] Determinare la temperatura $T_{1/2}$ alla quale la metà delle particelle si trova nel condensato, in funzione di T_0 .

Nel caso di particelle quantistiche di spin $S = \frac{1}{2}$, assumendo che il sistema si trovi a T = 0:

- 7. [3 punti] Determinare l'energia di Fermi ϵ_F in funzione del numero di particelle N.
- 8. [4 punti] Determinare il valore medio di p in funzione di ϵ_F .
- 9. [3 punti] Fissato R>0, determinare il numero di particelle N_R tale che per $N>N_R$ compaiono nel sistema particelle la cui distanza dall'asse z è $\rho\equiv\sqrt{x^2+y^2}>R$.

Si ricordano le definizioni: $\Gamma(z) \equiv \int_0^\infty \mathrm{d}t \, t^{z-1} \, \mathrm{e}^{-t}; \; \zeta(z) \equiv \frac{1}{\Gamma(z)} \int_0^\infty \mathrm{d}t \, \frac{t^{z-1}}{\mathrm{e}^t - 1}.$ Valori utili: $\Gamma(4) = 6, \; \Gamma(5) = 24, \; \zeta(4) = \frac{\pi^4}{90} \approx 1.0823, \; \zeta(5) \approx 1.0369.$

Risoluzione

Particelle classiche

1. Posto $\beta \equiv (\kappa_B T)^{-1}$, la funzione di partizione di una particella è

$$Z_1 = \frac{1}{h^3} \int d^3 \vec{p} \, d^3 \vec{r} \, e^{-\beta \mathcal{H}(\vec{p}, \vec{r})} = \frac{4\pi^2 L}{h^3} \int_0^\infty dp \, p^2 \, e^{-\beta cp} \int_0^\infty ds \, e^{-\beta \gamma s},$$

dove nell'integrale su \vec{r} si sono adottate coordinate cilindriche e si è fatto il cambio di variabile $s\equiv x^2+y^2$. Gli integrali sono elementari e si trova

$$Z_1 = \frac{8\pi^2 L}{h^3 c^3 \gamma \beta^4} = \frac{8\pi^2 L}{h^3 c^3 \gamma} (\kappa_B T)^4,$$

 $e Z = Z_1^N / N! \approx (eZ_1 / N)^N.$

L'energia libera di Helmoltz è

$$F = -\kappa_B T \ln Z = N\kappa_B T \ln \frac{h^3 c^3 \gamma N}{8\pi^2 e L (\kappa_B T)^4}.$$

L'energia interna per particella è

$$u = \frac{1}{N} \frac{\partial \beta F}{\partial \beta} = 4\kappa_B T.$$

2. Posto $\beta_R \equiv (\kappa_B T_R)^{-1}$, la condizione per determinare T_R è

$$\frac{\int_0^{R^2} ds \, e^{-\beta_R \gamma s}}{\int_0^{\infty} ds \, e^{-\beta_R \gamma s}} = \frac{1}{2} \quad \Rightarrow \quad 1 - e^{-\beta_R \gamma R^2} = \frac{1}{2} \quad \Rightarrow \quad \kappa_B T_R = \frac{\gamma R^2}{\ln 2} \approx 1.433 \, \gamma R^2.$$

3. La variazione di energia libera è

$$\Delta F = -N\kappa_B T \ln \left(1 - e^{-\beta \gamma R^2} \right),$$

quindi

$$\Delta s = -\frac{1}{N} \frac{\partial \Delta F}{\partial T} = \kappa_B \ln \left(1 - \mathrm{e}^{-\beta \gamma R^2} \right) - \frac{\kappa_B T \, \mathrm{e}^{-\beta \gamma R^2}}{1 - \mathrm{e}^{-\beta \gamma R^2}} \frac{\gamma R^2}{\kappa_B T^2}.$$

Posto $T=T_R$ e usando l'espressione per T_R trovata al punto precedente, si trova

$$\Delta s = -\kappa_B \ln 4.$$

Bosoni

4. Calcoliamo per iniziare la densità degli stati (con degenerazione di spin $g_s = 1$)

$$G(\epsilon) = g_s \frac{1}{h^3} \int d\vec{r} d\vec{p} \delta \left[\epsilon - \mathcal{H}(\vec{p}, \vec{r}) \right] = \frac{4\pi^2 g_s L}{h^3} \int_0^\infty dp \, p^2 \int_0^\infty ds \, \delta(\epsilon - cp - \gamma s),$$

dove si è nuovamente posto $s=x^2+y^2.$ Si trova quindi

$$G(\epsilon) = \frac{4\pi^2 g_s L}{3h^3 c^3 \gamma} \, \epsilon^3 \, \theta(\epsilon),$$

da cui è evidente che l'energia minima di una particella è $\epsilon_{\min} = 0$. Per trovare la temperatura di condensazione T_0 , ponendo $\beta_0 \equiv (\kappa_B T_0)^{-1}$, scriviamo

$$N = \int \frac{G(\epsilon)}{e^{\beta_0 \epsilon} - 1} d\epsilon = \frac{4\pi^2 g_s L (\kappa_B T_0)^4}{3h^3 c^3 \gamma} \int_0^\infty \frac{z^3}{e^z - 1} dz.$$

L'integrale vale $\zeta(4)\Gamma(4)$, ricordando che nel caso dei Bosoni di spin S=0 si ha che $g_s=1$, si trova

$$\kappa_B T_0 = \left[\frac{3h^3 c^3 \gamma N}{4\pi^2 L \zeta(4) \Gamma(4)} \right]^{1/4} \approx 0.329 \left(\frac{h^3 c^3 \gamma N}{L} \right)^{1/4}.$$

5. Le particelle nel condensato hanno energia nulla, quindi, per $T < T_0$, si ha

$$u = \frac{1}{N} \int_0^\infty \frac{\epsilon G(\epsilon)}{e^{\beta \epsilon} - 1} d\epsilon = \frac{4\pi^2 g_s L (\kappa_B T)^5}{3h^3 c^3 \gamma N} \int_0^\infty \frac{z^4}{e^z - 1} dz.$$

Ricordando l'espressione di N in funzione di T_0 e osservando che l'integrale vale $\zeta(5)\Gamma(5)$, per $T < T_0$, troviamo

$$u = \frac{\zeta(5)\Gamma(5)}{\zeta(4)\Gamma(4)} \frac{\kappa_B T^5}{T_0^4}.$$

Sostituendo $T = \frac{1}{2}T_0$, si trova

$$u = \frac{\zeta(5)}{8\zeta(4)} \kappa_B T_0 \approx 0.1198 \,\kappa_B T_0.$$

6. Per $T < T_0$, il numero di particelle fuori dal condensato è

$$N_{>} = \int_0^\infty \frac{G(\epsilon)}{\mathrm{e}^{\beta \epsilon} - 1} \, \mathrm{d}\epsilon = \frac{4\pi^2 g_s L \left(\kappa_B T\right)^4}{3h^3 c^3 \gamma} \int_0^\infty \frac{z^3}{\mathrm{e}^z - 1} \, \mathrm{d}z = N \left(\frac{T}{T_0}\right)^4.$$

Allora,

$$\left(\frac{T_{1/2}}{T_0}\right)^4 = \frac{N_{>}}{N} = \frac{N - N_0}{N} = 1 - \frac{N_0}{N} = \frac{1}{2} \qquad \Rightarrow \qquad T_{1/2} = \frac{T_0}{2^{1/4}} \approx 0.841 \, T_0.$$

Fermioni

7. In questo caso $g_s = 2$, quindi, invertendo la relazione

$$N = \frac{8\pi^2 L}{3h^3 c^3 \gamma} \,\theta(\epsilon_F) \int_0^{\epsilon_F} \epsilon^3 \,\mathrm{d}\epsilon = \frac{2\pi^2 L \epsilon_F^4}{3h^3 c^3 \gamma} \,\theta(\epsilon_F)$$

si ha

$$\epsilon_F = \left(\frac{3h^3c^3\gamma N}{2\pi^2L}\right)^{1/4} \approx 0.624 \left(\frac{h^3c^3\gamma N}{L}\right)^{1/4}.$$

8. La densità degli stati congiunta che serve per rispondere alla domanda posta è

$$G(\epsilon, p) = \frac{8\pi^2 L}{h^3 \gamma} p^2 \theta(\epsilon - cp).$$

Il valor medio cercato è

$$\overline{p} = \frac{8\pi^2 L}{h^3 \gamma N} \int_0^{\epsilon_F} d\epsilon \int_0^{\infty} dp \, p^3 \, \theta(\epsilon - cp),$$

Ricordando la relazione tra N e l'energia di Fermi, si ha

$$\overline{p} = \frac{3}{c\epsilon_F^4} \int_0^{\epsilon_F} \mathrm{d}\epsilon \, \epsilon^4 = \frac{3\epsilon_F}{5c},$$

che equivale a $\frac{3}{5}$ del valore massimo di p a T=0.

9. Fissata l'energia di Fermi ϵ_F , la distanza massima di una particella dall'asse z, $\rho_{\rm max}$, è tale che $\gamma \rho_{\rm max}^2 = \epsilon_F$. Il problema posto si risolve ponendo $\rho_{\rm max} = R$. Ricordando la relazione tra N e ϵ_F , troviamo

$$N_R = \frac{2\pi^2 L \gamma^3 R^8}{3h^3 c^3}.$$