Written exam of Condensed Matter Physics - September 9th 2022 Profs. S. Caprara and A. Polimeni

Exercise 1: Phonons.

Consider a one-dimensional crystal with chemical formula AB, composed of N unit cells, with lattice spacing a , hosting a two-atom basis. The atoms are constrained to move along the line that defines the crystal. The masses of the two inequivalent atoms are $M_A = m$ and $M_B = \frac{8}{7}m$, and K is the spring constant that describes the elastic force between nearest-neighbor atoms (see Fig. 1). Indicate with a_n and b_n the displacements of the two inequivalent atoms (respectively A and B) in the n -th unit cell, with respect to their equilibrium positions. Adopt periodic boundary conditions.

1. [5 points] Assuming traveling-wave solutions $a_n = Ae^{i(qna-\omega t)}$ and $b_n = Be^{i(qna-\omega t)}$, where q is the one-dimensional wave vector, determine the dispersion of the acoustic and optical phonon branches, $\omega_a(q)$ and $\omega_o(q)$.

2. [4 points] Verify that, for small $q, \omega_a(q) \approx c_s|q|$, and determine the expression of the sound velocity c_s and of the minimum of the optical branch $(\omega_o)_{\text{min}} \equiv \min_q \omega_o(q)$, as functions of K, a, and m.

3. [6 points] Let now $a = 0.231$ nm, $m = 2.32 \times 10^{-26}$ kg, and $K = 7.75$ kg/s². Determine the numerical value of the sound velocity c_s and of $(\omega_o)_{\text{min}}$, then adopt a Debye model for the acoustic branch, $\omega_a(q) = c_s|q|$, and an Einstein model for the optical branch, with Einstein frequency $\omega_E = (\omega_o)_{\text{min}}$, to calculate the specific heat c_V of the lattice at very high temperatures $(\kappa_B T \gg \hbar \omega_E)$, and at $T = 1$ K. Note that $\int_0^\infty \frac{x}{e^x - 1} dx = \frac{\pi^2}{6}$ $\frac{1}{6}$.

Exercise 2: Semiconductors.

In an n-type semiconductor (namely, doped with donors having concentration $N_d = 10^{20} \text{ m}^{-3}$) the conduction and valence bands can be approximated close to the band gap energy by the following relationships

$$
E_C = E_g + Aa^2(k_x^2 + k_y^2 + k_z^2),
$$

\n
$$
E_V = -Ba^2(k_x^2 + k_y^2 + k_z^2),
$$

respectively, where E_g is the band gap, $A = 2.0 \text{ eV}$, $B = 0.5 \text{ eV}$ and $a = 0.3 \text{ nm}$. At $T = 500 \text{ K}$ the semiconductor is in an intrinsic regime, with carrier concentration equal to 1.4×10^{22} m⁻³.

1. [6 points] Determine the band gap energy at $T = 500 \text{ K}$.

2. [5 points] Determine the sample electrical conductivity σ at $T = 500$ K, knowing that the electron and hole relaxation times are $\tau_e = 1.0 \times 10^{-12}$ s and $\tau_h = 3.5 \times 10^{-12}$ s, respectively.

3. [4 points] Assuming that the carrier effective mass and relaxation time do not change with temperature, evaluate the sample electrical conductivity at $T = 10$ K, knowing that the carrier concentration at that temperature is $n_c =$ $2.6 \times 10^{18} \,\mathrm{m}^{-3}$ (extrinsic regime).

[Useful constants and conversion factors: the Planck constant is $\hbar = 1.05 \times 10^{-34}$ J·s, the Boltzmann constant is $\kappa_B = 1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$, the elementary charge is $e = 1.60 \times 10^{-19} \text{ C}$, the free electron mass is $m_0 = 9.11 \times 10^{-31} \text{ kg}$; $1 \text{ eV corresponds to a temperature of } 1.16 \times 10^4 \text{ K or to an energy of } 1.60 \times 10^{-19} \text{ J}.$

Solution Profs. S. Caprara and A. Polimeni

Exercise 1.

1. The equations of motion are

$$
\begin{cases} M_{A}\ddot{a}_{n} = -K\left(2a_{n} - b_{n} - b_{n-1}\right), \\ M_{B}\ddot{b}_{n} = -K\left(2b_{n} - a_{n+1} - a_{n}\right). \end{cases}
$$

Substituting the traveling-wave solutions, we find

$$
\begin{cases} \left(2K - M_{A}\omega^{2}\right)\mathcal{A} - K\left(1 + e^{-iqa}\right)\mathcal{B} = 0, \\ -K\left(1 + e^{iqa}\right)\mathcal{A} + \left(2K - M_{B}\omega^{2}\right)\mathcal{B} = 0, \end{cases}
$$

which admits nontrivial solutions for A, B if and only if the determinant of the matrix associated to the system of linear equations vanishes. Letting in the following $\overline{\Omega} \equiv \sqrt{K(M_A + M_B)/(M_A M_B)} = \sqrt{\frac{15K}{8m}}$, which is the relevant frequency scale in our problem, the equation that determines the phonon frequencies reads

$$
\omega^4 - 2\overline{\Omega}^2 \omega^2 + \frac{224}{225} \overline{\Omega}^4 \sin^2 \frac{qa}{2} = 0,
$$

whose solutions are

$$
\omega_{\pm}^2(q) = \overline{\Omega}^2 \left(1 \pm \sqrt{1 - \frac{224}{225} \sin^2 \frac{qa}{2}} \right),
$$

with $\omega_a(q) = \omega_-(q)$ and $\omega_o(q) = \omega_+(q)$ describing the acoustic and optical phonon branch, respectively.

2. For the acoustic branch, since for $|q|a \ll 1$ we have $\sin^2 \frac{qa}{2} \approx \left(\frac{qa}{2}\right)^2$ and $\sqrt{1-\frac{56}{225}(qa)^2} \approx 1-\frac{28}{225}(qa)^2$, we find

$$
\omega_a(q) \approx c_s|q|,
$$
 with $c_s = \frac{2\sqrt{7}}{15} \overline{\Omega} a = \sqrt{\frac{7K}{30m}} a.$

The minimum of the optical branch is found at $q = \frac{\pi}{a}$, and is $(\omega_o)_{\text{min}} = 4\overline{\Omega}/\overline{\Omega}$ $\sqrt{15} = \sqrt{2K/m}.$

3. Inserting the values given in the text, we find

$$
c_s = 2.04 \times 10^3 \,\mathrm{m/s}; \quad (\omega_o)_{\text{min}} = 2.58 \times 10^{13} \,\mathrm{s}^{-1}.
$$

As suggested by the text, we set $\omega_E = (\omega_o)_{\text{min}}$. Then, the internal energy per unit volume is

$$
u = \sum_{s=a,o} \int_{-\pi/a}^{\pi/a} \frac{dq}{2\pi} \frac{\hbar \omega_s(q)}{e^{\beta \hbar \omega_s(q)} - 1} \approx \int_0^{q_D} \frac{dq}{\pi} \frac{\hbar c_s q}{e^{\beta \hbar c_s q} - 1} + \frac{1}{a} \frac{\hbar \omega_E}{e^{\beta \hbar \omega_E} - 1},
$$

with $\beta = 1/(k_BT)$, and $q_D = \pi/a$, because in one dimension the Debye sphere coincides with the first Brillouin zone. At high temperature, $k_BT \gg \hbar \omega_D$, $\hbar \omega_E$, with $\omega_D \equiv c_s q_D$, the exponentials in the denominators can be expanded

to first order, the two phonon modes give the same contribution (equipartition), and

$$
u \approx \frac{2k_B T}{a} \Rightarrow c_V = \frac{2k_B}{a} \equiv c_V^{DP},
$$

i.e., we recover the Dulong-Petit (DP) value for a one-dimensional crystal with two atoms per unit cell. For the given set of parameters $c_V \approx 1.195 \times 10^{-13} \,\mathrm{J/(K \cdot m)}$.

At low temperature, $k_BT \ll \hbar\omega_D, \hbar\omega_E$,

$$
u \approx \frac{\hbar c_s}{\pi} \left(\frac{k_B T}{\hbar c_s}\right)^2 \int_0^\infty \frac{x}{e^x - 1} dx + \frac{\hbar \omega_E}{a} e^{-\beta \hbar \omega_E} \approx \frac{\pi^2 \hbar \omega_D}{6a} \left(\frac{k_B T}{\hbar \omega_D}\right)^2 \Rightarrow c_V = \frac{\pi^2 k_B}{3a} \left(\frac{k_B T}{\hbar \omega_D}\right),
$$

where we adopted the change of variable $x = \beta \hbar c_s q$ in the integral over q, and extended the integration limit to infinity, to extract the leading behavior at small T . In the final expression for u , we neglected the exponentially small contribution of the optical branch, since the numerical estimate gives $\Theta_E \equiv \hbar \omega_E / k_B = 197 \text{ K}$, i.e., at $T = 1 \text{ K}$, $e^{-\beta \hbar \omega_E} \approx e^{-197} \approx 2.78 \times 10^{-86}$. Thus, at $T = 1$ K, $c_V \approx 0.0155 k_B/a \approx 7.76 \times 10^{-3} c_V^{DP} = 9.27 \times 10^{-16}$ J/(K·m), where we used the numerical value of the Debye temperature $\Theta_D \equiv \hbar \omega_D / k_B = 212 \text{ K}.$

Exercise 2.

1. Given the carrier concentration in the intrinsic regime:

$$
n_c = p_v = n_i = 2.5 \cdot (0.212 \cdot 0.847)^{3/4} \left(\frac{5}{3}\right)^{3/2} \cdot e^{-E_g/(2 \cdot 0.043)} \times 10^{25} \,\mathrm{m}^{-3} = 1.40 \times 10^{22} \,\mathrm{m}^{-3},
$$

where the electron and hole effective mass used are $m_e = \hbar^2/(2Aa^2) = 1.928 \times 10^{-31}$ kg = 0.212 m_0 and m_h = $\hbar^2/(2Ba^2) = 7.713 \times 10^{-31}$ kg = 0.847 m₀, respectively, one finds $E_g = 0.60$ eV.

2. The electrical conductivity at $T = 500 \,\mathrm{K}$ is given by

$$
\sigma = n_i e^2 \left(\frac{\tau_e}{m_e} + \frac{\tau_h}{m_h} \right) = 3.5 \times 10^3 \,\Omega^{-1} \cdot m^{-1}.
$$

3. At $T = 10$ K only electrons ionized from the donors contribute to the electrical conductivity, thus

$$
\sigma = n_c e^2 \frac{\tau_e}{m_e} = 3.5 \times 10^{-1} \, \Omega^{-1} \cdot \mathrm{m}^{-1}.
$$