Written exam of Condensed Matter Physics - September 10th 2019 Profs. S. Caprara and A. Polimeni

Exercise 1: X ray scattering.

Sodium chloride (NaCl) crystallizes in a face-centered cubic lattice with a basis consisting of a sodium ion at $d_1 =$ $(0, 0, 0)$ and a chlorine ion at the center of the conventional cubic cell $\mathbf{d}_2 = (a/2)(1, 1, 1)$, with $a = 0.56402$ nm (see Fig. 1, left panel).

1. Determine the first 8 angles, measured with respect to the incident beam direction (see Fig. 1, right panel), for which diffraction peaks are observed on a detector using the powder or Debye-Scherrer method. The x-ray beam wavelength is $\lambda = 0.15$ nm.

2. Say which peaks are more intense assuming that the atomic form factor f can be put equal to Z (i.e., the atomic number) times the amplitude of the wave scattered from one electron.

Fig. 1.

Exercise 2: Intrinsic semiconductors.

Consider a two-dimensional intrinsic semiconductor, that is described by the following density of states

$$
D(\varepsilon) = \begin{cases} D_v, & \text{for } \varepsilon < \varepsilon_v, \\ D_c, & \text{for } \varepsilon > \varepsilon_c, \\ 0, & \text{elsewhere,} \end{cases}
$$

such that the number of states per unit surface, in the interval $[\varepsilon, \varepsilon + d\varepsilon]$, is $D(\varepsilon) d\varepsilon$, with constant D_v and D_c , ε_v and ε_c being the thresholds of the valence and conduction band, respectively.

1. Determine the density of electrons in the conduction band, n , and the density of holes in the valence band, p , as a function of $D_v, D_c, \varepsilon_v, \varepsilon_c$, at a generic temperature T (assume, here and in the following, that the temperature is such that $\mu - \varepsilon_v$, $\varepsilon_c - \mu \gg \kappa_B T$, where μ is the chemical potential and κ_B is the Boltzmann constant).

2. Determine the expression of the chemical potential μ , as a function of $D_v, D_c, \varepsilon_v, \varepsilon_c$, at a generic temperature T.

3. Let now $D_v = 2.5 \times 10^{18} \text{ eV}^{-1} \cdot \text{m}^{-2}$, $D_c = 5.0 \times 10^{18} \text{ eV}^{-1} \cdot \text{m}^{-2}$, $\varepsilon_v = 1.05 \text{ eV}$, $\varepsilon_c = 1.45 \text{ eV}$, evaluate n, p and μ at $T = 300$ K.

[Note that 1 eV corresponds to an energy of 1.60×10^{-19} J; the Boltzmann constant is $\kappa_B = 1.38 \times 10^{-23}$ J·K⁻¹].

Exercise 1.

1. Since

$$
\theta = \arcsin\left(\frac{\lambda}{2d}\right) = \arcsin\left(\frac{\lambda}{a}\sqrt{h^2 + k^2 + l^2}\right),\,
$$

where the indices h, k, l are all even or all odd, we find

2. The resulting scattered amplitude is

$$
I = A \left| f_{\text{Na}} \left[e^{-i0} + e^{-i\pi(h+k)} + e^{-i\pi(h+l)} + e^{-i\pi(k+l)} \right] \right|
$$

+ $f_{\text{Cl}} \left[e^{-i\pi(h+k+l)} + e^{-i\pi(2h+2k+l)} + e^{-i\pi(2h+k+2l)} + e^{-i\pi(h+2k+2l)} \right] \right|^2$
= $A \left| \left[f_{\text{Na}} + f_{\text{Cl}} e^{-i\pi(h+k+l)} \right] \left[1 + e^{-i\pi(h+k)} + e^{-i\pi(h+l)} + e^{-i\pi(k+l)} \right] \right|^2.$

The scattered amplitude is non zero provided the h, k, l indices are all even, and $I = 16A(f_{\text{Na}} + f_{\text{Cl}})^2$ (greater intensity), or all odd, and $I = 16 A (f_{\text{Na}} - f_{\text{Cl}})^2$ (lower intensity).

Exercise 2.

1. We have

$$
n = \int_{\varepsilon_c}^{+\infty} \frac{D_c}{e^{(\varepsilon - \mu)/\kappa_B T} + 1} d\varepsilon \approx D_c \int_{\varepsilon_c}^{+\infty} e^{-(\varepsilon - \mu)/\kappa_B T} d\varepsilon = \kappa_B T D_c e^{-(\varepsilon_c - \mu)/\kappa_B T}, \tag{1}
$$

and

$$
p = \int_{-\infty}^{\varepsilon_v} D_v \left[1 - \frac{1}{e^{(\varepsilon - \mu)/\kappa_B T} + 1} \right] d\varepsilon \approx D_v \int_{-\infty}^{\varepsilon_v} e^{(\varepsilon - \mu)/\kappa_B T} d\varepsilon = \kappa_B T D_v e^{(\varepsilon_v - \mu)/\kappa_B T}.
$$
 (2)

Multiplying Eq. (1) by Eq. (2), the dependence on μ drops and we find

$$
np = (\kappa_B T)^2 D_c D_v e^{(\varepsilon_v - \varepsilon_c)/\kappa_B T} \equiv n_i^2,
$$

which is the *law of mass action* in the present situation. In an intrinsic semiconductor

$$
n = p = n_i = \kappa_B T \sqrt{D_c D_v} e^{(\varepsilon_v - \varepsilon_c)/2\kappa_B T}.
$$

2. Dividing Eq. (1) by Eq. (2), and taking into account that $n = p$ in an intrinsic semiconductor, we find

$$
1 = \frac{D_c}{D_v} e^{(2\mu - \varepsilon_v - \varepsilon_c)/\kappa_B T} \qquad \Rightarrow \qquad 0 = \log \frac{D_c}{D_v} + \frac{2\mu - \varepsilon_v - \varepsilon_c}{\kappa_B T},
$$

hence

$$
\mu = \frac{1}{2} \left(\varepsilon_v + \varepsilon_c + \kappa_B T \log \frac{D_v}{D_c} \right).
$$

3. At $T = 300 \text{ K}$, we have $\kappa_B T = 0.0259 \text{ eV}$, hence

$$
p = n = n_i = 4.06 \times 10^{13} \,\mathrm{m}^{-2},
$$

and

$$
\mu = 1.24 \,\text{eV}.
$$