
Written exam of Condensed Matter Physics - September 10th 2019
Profs. S. Caprara and A. Polimeni

Exercise 1: X ray scattering.

Sodium chloride (NaCl) crystallizes in a face-centered cubic lattice with a basis consisting of a sodium ion at d1 =
(0, 0, 0) and a chlorine ion at the center of the conventional cubic cell d2 = (a/2)(1, 1, 1), with a = 0.56402 nm (see
Fig. 1, left panel).

1. Determine the first 8 angles, measured with respect to the incident beam direction (see Fig. 1, right panel), for
which diffraction peaks are observed on a detector using the powder or Debye-Scherrer method. The x-ray beam
wavelength is λ = 0.15 nm.

2. Say which peaks are more intense assuming that the atomic form factor f can be put equal to Z (i.e., the atomic
number) times the amplitude of the wave scattered from one electron.
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Fig. 1.

Exercise 2: Intrinsic semiconductors.

Consider a two-dimensional intrinsic semiconductor, that is described by the following density of states

D(ε) =

Dv, for ε < εv,
Dc, for ε > εc,
0, elsewhere,

such that the number of states per unit surface, in the interval [ε, ε + dε], is D(ε) dε, with constant Dv and Dc, εv
and εc being the thresholds of the valence and conduction band, respectively.

1. Determine the density of electrons in the conduction band, n, and the density of holes in the valence band, p, as
a function of Dv, Dc, εv, εc, at a generic temperature T (assume, here and in the following, that the temperature is
such that µ− εv, εc − µ� κBT , where µ is the chemical potential and κB is the Boltzmann constant).

2. Determine the expression of the chemical potential µ, as a function of Dv, Dc, εv, εc, at a generic temperature T .

3. Let now Dv = 2.5× 1018 eV−1·m−2, Dc = 5.0× 1018 eV−1·m−2, εv = 1.05 eV, εc = 1.45 eV, evaluate n, p and µ at
T = 300 K.

[Note that 1 eV corresponds to an energy of 1.60× 10−19 J; the Boltzmann constant is κB = 1.38× 10−23 J·K−1].



Solution of the written exam
Profs. S. Caprara and A. Polimeni

Exercise 1.

1. Since

θ = arcsin

(
λ

2d

)
= arcsin

(
λ

a

√
h2 + k2 + l2

)
,

where the indices h, k, l are all even or all odd, we find

h k l d (nm) θ (deg) 2θ (deg)

1 1 1 1 0.32564 13.31578 26.63156
2 2 0 0 0.28201 15.42329 30.84658
3 2 2 0 0.19941 22.09277 44.18553
4 3 1 1 0.17006 26.16926 52.33858
5 2 2 2 0.16282 27.42812 54.85624
6 4 0 0 0.14142 32.13365 64.26730
7 3 3 1 0.12940 35.42384 70.84768
8 4 2 0 0.12612 36.48967 72.97934

2. The resulting scattered amplitude is

I = A
∣∣∣fNa

[
e−i0 + e−iπ(h+k) + e−iπ(h+l) + e−iπ(k+l)

]
+ fCl

[
e−iπ(h+k+l) + e−iπ(2h+2k+l) + e−iπ(2h+k+2l) + e−iπ(h+2k+2l)

]∣∣∣2
= A

∣∣∣[fNa + fCl e−iπ(h+k+l)
] [

1 + e−iπ(h+k) + e−iπ(h+l) + e−iπ(k+l)
]∣∣∣2 .

The scattered amplitude is non zero provided the h, k, l indices are all even, and I = 16A (fNa + fCl)
2

(greater

intensity), or all odd, and I = 16A (fNa − fCl)
2

(lower intensity).

Exercise 2.

1. We have

n =

∫ +∞

εc

Dc

e(ε−µ)/κBT + 1
dε ≈ Dc

∫ +∞

εc

e−(ε−µ)/κBT dε = κBTDc e−(εc−µ)/κBT , (1)

and

p =

∫ εv

−∞
Dv

[
1− 1

e(ε−µ)/κBT + 1

]
dε ≈ Dv

∫ εv

−∞
e(ε−µ)/κBT dε = κBTDv e(εv−µ)/κBT . (2)

Multiplying Eq. (1) by Eq. (2), the dependence on µ drops and we find

np = (κBT )2DcDv e(εv−εc)/κBT ≡ n2i ,

which is the law of mass action in the present situation. In an intrinsic semiconductor

n = p = ni = κBT
√
DcDv e(εv−εc)/2κBT .

2. Dividing Eq. (1) by Eq. (2), and taking into account that n = p in an intrinsic semiconductor, we find

1 =
Dc

Dv
e(2µ−εv−εc)/κBT ⇒ 0 = log

Dc

Dv
+

2µ− εv − εc
κBT

,



hence

µ =
1

2

(
εv + εc + κBT log

Dv

Dc

)
.

3. At T = 300 K, we have κBT = 0.0259 eV, hence

p = n = ni = 4.06× 1013 m−2,

and

µ = 1.24 eV.


