
Written exam of Condensed Matter Physics - February 12th 2019
Profs. S. Caprara and A. Polimeni

Exercise 1: Phonons.

Consider a model for a linear crystal composed of N units cells of size a, with a two-atom basis. All atoms are
constrained to move only along the line that defines the crystal. The two inequivalent atoms have masses M and m,
respectively. The spring constant describing the elastic force between neighboring atoms is K (see Fig. 1). Indicate
with un and wn the displacement of the two inequivalent atoms in the n-th unit cell, with respect to their equilibrium
positions. Adopt Born-von Karman periodic boundary conditions.

1. Assuming traveling-wave solutions un = Aei(qna−ωt) and wn = Bei(qna−ωt), where q is the one-dimensional wave
vector, determine the dispersion of the acoustic and optical phonon branches, ωa(q) and ωo(q).

2. Verify that, for small q, ωa(q) ≈ cs|q|, and determine the expression of the sound velocity cs.

3. Let now a = 0.145 nm, m = 12mu, M = 16mu, with mu = 1.66 × 10−27 kg, K = 8.55 kg/s2. After determining
the numerical value of the sound velocity cs, adopt a Debye model for the acoustic branch, ωa(q) = cs|q|, and an
Einstein model for the optical branch, with ωE = ωo(q = 0), to calculate the specific heat cV of the lattice at very

high temperatures (κBT � ~ωE), and at T = 5 K. Consider that
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[Note that the Planck constant is ~ = 1.05× 10−34 J·s, the Boltzmann constant is κB = 1.38× 10−23 J·K−1].
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Fig. 1.

Exercise 2: Semiconductors.

Consider an intrinsic semiconductor that can be described as a two band system, with the top of the valence band at
εv = 1.15 eV and the bottom of the conduction band at εc = 1.95 eV (these two values are assumed to be temperature
independent). The values of the effective masses along the principal axes of the crystal are: mx,y

c = 0.2m0 and
mz
c = 0.4m0 for electrons; mx,y

v = 0.3m0 and mz
v = 0.6m0 for holes; here, m0 = 9.11 × 10−31 kg is the free

electron mass. The mobilities of electrons and holes along the principal axes are µx,ye = 4.80 × 10−2 m2·V−1·s−1,
µze = 2.40× 10−2 m2·V−1·s−1, µx,yh = 3.20× 10−2 m2·V−1·s−1, µzh = 1.60× 10−2 m2·V−1·s−1.

1. Calculate the density of electrons in the conduction band nc, the density of holes in the valence band pv, at a
temperature T = 300 K.

2. Calculate the components of the conductivity tensor along the principal axes, σxi = σyi and σzi (in Ω−1·m−1, the
subscript i indicates that the quantity refers to the intrinsic regime) at T = 300 K.

3. Suppose now that the system is doped with a density Na = 2.45× 1020 m−3 of acceptor atoms (each atom accepts
one electron). Assuming that the system is in the predominantly extrinsic regime, and that acceptors are fully ionized,
calculate the density of electrons in the conduction band nc, the density of holes in the valence band pv, and the values
of the components of the conductivity tensor along the principal axes, σx = σy and σz (in Ω−1·m−1) at T = 300 K.

[Note that 1 eV corresponds to a temperature of 1.16× 104 K or to an energy of 1.60× 10−19 J, the Planck constant is
~ = 1.05×10−34 J·s, the Boltzmann constant is κB = 1.38×10−23 J·K−1, the elementary charge is e = 1.60×10−19 C].



Solution of the mid-term assessment test
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Exercise 1.

1. The equations of motion are Mün = −K (2un − wn − wn−1) ,

mẅn = −K (2wn − un+1 − un) .

Substituting the traveling-wave solutions we find
(
2K −Mω2

)
A−K

(
1 + e−iqa

)
B = 0,

−K
(
1 + eiqa

)
A+
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)
B = 0,

which admits nontrivial solutions for A,B if and only if the determinant of the matrix associated to the system of
linear equations vanishes. Letting in the following Ω ≡

√
K(M +m)/(Mm), which is the relevant frequency scale in

our problem, and introducing the dimensionless parameter λ ≡ 2Mm/(M + m)2, the equation that determines the
phonon frequencies reads
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whose solutions are

ω2
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with ωa(q) = ω−(q) and ωo(q) = ω+(q) describing the acoustic and optical phonon branch, respectively.

2. For the acoustic branch, since for |q|a� 1 we have sin2 qa
2 ≈

(
qa
2

)2
and

√
1− 1

2λ(qa)2 ≈ 1− 1
4λ(qa)2, we find

ωa(q) ≈ cs|q|, with cs =

√
λ

2
Ωa.

Likewise, for |q|a� 1, the optical branch approaches ωa(q) ≈
√

2 Ω.

3. Inserting the values given in the text, we find

Ω =

√
7K

48mu
= 2.74× 1013 s−1, λ =

24

49
= 0.490, → cs = 1.39× 103 m/s.

We set ωE ≈ ωo(q = 0) =
√

2 Ω. Then, the internal energy per unit volume is
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∑
s=a,o

∫ π/a

−π/a

dq

2π

~ωs(q)
eβ~ωs(q) − 1

≈
∫ qD

0

dq

π

~csq
eβ~csq − 1

+
1

a

~ωE
eβ~ωE − 1

,

with β = 1/(kBT ), and qD = π/a, because in one dimension the Debye sphere coincides with the first Brillouin zone.
At high temperature, kBT � ~ωD, ~ωE , with ωD ≡ csqD, the exponentials in the denominators can be expanded

to first order, the two phonon modes give the same contribution (equipartition), and

u ≈ 2kBT

a
⇒ cV =

2kB
a
≡ cDPV ,

i.e., we recover the Dulong-Petit (DP) value for a one-dimensional crystal with two atoms per unit cell. For the given
set of parameters cV ≈ 1.90× 10−13 J/(K·m).

At low temperature, kBT � ~ωD, ~ωE ,

u ≈ ~cs
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where we adopted the change of variable x = β~csq in the integral over q, and extended the integration limit to
infinity, to extract the leading behavior at small T . In the final expression for u, we neglected the exponentially
small contribution of the optical branch, since the numerical estimate gives ΘE ≡ ~ωE/kB = 296 K, i.e., at T = 5 K,
e−β~ωE ≈ e−59.2 ≈ 1.96 × 10−26. Thus, at T = 5 K, cV ≈ 0.0715 kB/a ≈ 0.0357 cDPV = 6.80 × 10−15 J/(K·m), where
we used the numerical value of the Debye temperature ΘD ≡ ~ωD/kB = 230 K.

Exercise 2.

1. The gap is Eg = 1.28 × 10−19 J, hence Eg/κB = 9.28 × 103 K. The thermal energy is κBT = 4.14 × 10−21 J=

2.58 × 10−2 eV, hence Eg/2κBT = 15.5. The average effective masses are mc = (mx
c m

y
c m

z
c)

1/3 = 0.252m0 and

mv = (mx
v m

y
vm

z
v)

1/3 = 0.378m0. Then, the number of intrinsic carriers at T = 300 K is

ni =
1

4

(
2κBT

π~2

)3/2

(mcmv)
3/4 e−Eg/2κBT = 7.98× 1017 m−3

and in the intrinsic regime nc = pv = ni.
2. In the intrinsic regime, the components of the conductivity tensor along the principal axes are

σx = σy = e ni(µ
x
e + µxh) = 1.02× 10−2 Ω−1 ·m−1, σz = e ni(µ

z
e + µzh) = 5.11 × 10−3 Ω−1 ·m−1,

3. The doped semiconductor is p-type. If the dopants are fully ionized

nc ≈
n2i
Na

= 2.60× 1015 m−3, pv ≈ Na = 2.45× 1020 m−3.

In the predominantly extrinsic regime the contribution of minority carriers can be safely neglected, and the com-
ponents of the conductivity tensor along the principal axes are

σx = σy = e pv µ
x
h = 1.26 Ω−1 ·m−1, σz = e pv µ

z
h = 0.628 Ω−1 ·m−1.


