Written test of Condensed Matter Physics - January 22nd 2019 Profs. S. Caprara and A. Polimeni

Exercise 1. Using the powder (or Debye-Scherrer) method with a radiation of wavelength $\lambda = 0.1$ nm, a given cubic crystal shows two diffraction peaks corresponding to the following scattering angles $\phi = 2\vartheta$: 28.53° and 40.78°.

- a. Say if the crystal is a face-centered cubic or a body-centered cubic lattice.
- b. Determine the size a of the conventional unit cell.
- c. Determine the next two scattering angles corresponding to the observation of the diffraction maxima.

Exercise 2. A two-dimensional crystal is formed by a rectangular lattice with atoms having one valence electron of s-type. Fig, 1 shows the lattice constants $a_1 = 0.20$ nm and $a_2 = 0.25$ nm.

a. Determine the dispersion of the band $E(k_x, k_y)$, taking into account the contribution of the first three nearest neighbors only. Neglect the overlap integrals, indicate as γ_i (i = 1, 2, 3) the pertinent "transfer integrals" [$\gamma_i \equiv$ $\gamma(\mathbf{R}_i) = -\int \mathrm{d}\mathbf{r} \, \phi_s(\mathbf{r}) \Delta U(\mathbf{r}) \phi_s(\mathbf{r} - \mathbf{R}_i)$, as E_s the energy level of the atomic s orbital, and let $\beta = \gamma(\mathbf{R} = 0)$.

b. Evaluate the electron effective mass and mobility at $(k_x, k_y) = (0, 0) = \Gamma$, along the x and y directions, m_{xx}, m_{yy} and μ_{xx}, μ_{yy} , respectively.

Values of the parameters: $\gamma_1 = 1 \text{ eV}$, $\gamma_2 = 0.3 \text{ eV}$, $\gamma_3 = 0.05 \text{ eV}$; relaxation time $\tau = 2 \times 10^{-15} \text{ s}$; 1 eV corresponds to an energy of 1.60×10^{-19} J, the Planck constant is $\hbar = 1.05 \times 10^{-34}$ J·s, the elementary charge is $e = 1.60 \times 10^{-19}$ C. The values of E_s and β are not needed in the numerical calculations.

Solution of the written test Profs. S. Caprara and A. Polimeni

Exercise 1.

a. Let

$$
\beta = \frac{\sin \vartheta_2}{\sin \vartheta_1} = \frac{0.348}{0.246} = 1.416 = \frac{d_1}{d_2} = \left(\frac{h_2^2 + k_2^2 + l_2^2}{h_1^2 + k_1^2 + l_1^2}\right)^{1/2}.
$$

Given the selection rule table shown in Fig. 2, one expects $\beta =$ √ 2 for bcc and $\beta = 2/$ √ 3 for fcc, hence the crystal is bcc.

Fig. 2.

b. From Bragg's relation we obtain, e.g.,

$$
2d_1 \sin \vartheta_1 = \lambda, \qquad \Rightarrow \qquad a = \frac{\lambda}{2 \sin \vartheta_1} \sqrt{h_1^2 + k_1^2 + l_1^2} = \frac{\lambda \sqrt{2}}{2 \sin \vartheta_1},
$$

hence the size of the conventional unit cell is $a=2.87\,\text{\AA}.$

c. For the given bcc lattice

$$
\sin \vartheta_s = \sin \vartheta_1 \left(\frac{h_s^2 + k_s^2 + l_s^2}{h_1^2 + k_1^2 + l_1^2} \right)^{1/2} = 0.174 \sqrt{h_s^2 + k_s^2 + l_s^2}, \qquad s = 2, 3, 4, \dots
$$

For $s = 3$, $(hkl) = (211)$, hence $\sin \vartheta_3 = 0.427$ and $\phi_3 = 2\vartheta_3 = 50.53^\circ$. For $s = 4$, $(hkl) = (220)$, hence $\sin \vartheta_4 = 0.493$ and $\phi_4 = 2\vartheta_4 = 59.05^\circ$.

Exercise 2.

a. We have

$$
E(k_x, k_y) = E_s - \beta - \sum_{i=1,2,3} \gamma(\mathbf{R}_i) e^{i\mathbf{k} \cdot \mathbf{R}_i},
$$

where $\mathbf{R}_1 = (\pm a_1, 0), \, \mathbf{R}_2 (0, \pm a_2), \, \mathbf{R}_3 = (\pm a_1, \pm a_2), \text{ and } \mathbf{k} = (k_x, k_y).$ Then,

$$
E(k_x, k_y) = E_s - \beta - 2\gamma_1 \cos(k_x a_1) - 2\gamma_2 \cos(k_y a_2) - 4\gamma_3 \cos(k_x a_1) \cos(k_y a_2).
$$

b. Expanding the band around the Γ point we find

$$
E(k_x, k_y) \approx E_s - \beta - 2(\gamma_1 + \gamma_2 + 2\gamma_3) + (2\gamma_1 + 4\gamma_3) \frac{a_1^2 k_x^2}{2} + (2\gamma_2 + 4\gamma_3) \frac{a_2^2 k_y^2}{2},
$$

hence

$$
m_{xx} = \frac{\hbar^2}{2a_1^2(\gamma_1 + 2\gamma_3)} = 7.83 \times 10^{-31} \,\text{kg}, \qquad m_{yy} = \frac{\hbar^2}{2a_2^2(\gamma_2 + 2\gamma_3)} = 1.38 \times 10^{-30} \,\text{kg}.
$$

Therefore, the required mobilities are

$$
\mu_{xx} = \frac{e\tau}{m_{xx}} = 4.09 \times 10^{-4} \,\mathrm{m}^2 \cdot \mathrm{V}^{-1} \cdot \mathrm{s}^{-1}, \qquad \mu_{yy} = \frac{e\tau}{m_{yy}} = 2.32 \times 10^{-4} \,\mathrm{m}^2 \cdot \mathrm{V}^{-1} \cdot \mathrm{s}^{-1}.
$$