TOPICS OF THE LECTURES OF CONDENSED MATTER PHYSICS

[AM X = Ashcroft Mermin Chapter X, LL X Y Z = Landau Lifshits vol X chap Y sec Z]

L1	25 sep 2018	Introduction. Crystal lattices. Bravais Lattices and their classification. Primitive cell. Wigner-Seitz primitive cell. [AM 4, see also AM 7].
L2	27 sep 2018	Reciprocal lattice and its properties. Examples. Lattice planes.
L3	2 oct 2018	[AM 5]. X-ray scattering from a crystal: Bragg's and von Laue's
L4	4 oct 2018	formulations and their equivalence. [AM 6]. Exercises on lattices and X-ray diffraction. [AM: problem 1
L5	9 oct 2018	page 82; problem 1 page 108]. Exercises on lattices and X-ray diffraction. [AM: problem 1 page 108, continued].
L6	11 oct 2018	The adiabatic approximation. The harmonic approximation for lattice vibration. Normal modes of a one-dimensional Bravais lattice. [AM 22].
L7	16 oct 2018	Normal modes of a one-dimensional Bravais lattice with basis [AM 22]. General formulation of the theory of harmonic lattice vibrations. [AM 22: see also LL V VI 69].
L8	18 oct 2018	Acoustic and optical modes. The quantum theory of the harmonic crystal. Phonons. [AM 23].
L9	23 oct 2018	The specific heat of solids. Debye theory of the specific heath. Debye's interpolating formula. [AM 23].
L10	25 oct 2018	The specific heat of solids. Einstein theory. Specific heath of optical modes. [AM 23]. Exercise on the linear chain with nonnearest-neighbors springs. [AM; problem 1, page 448].
L11	5 nov 2018	Exercise on the transverse phonons in CuO2 planes. [Cazaux, problem 8, page 271].
L12	6 nov 2018	Exercise on the lattice specific heat. [AM: problem 2, page 468]. Electron states in a periodic potential. Bloch's theorem. [AM 8].
L13	8 nov 2018	Periodic boundary conditions. Second proof of Bloch's theorem [AM 8]. Exercise on the lattice specific heat [Cazaux, problem 18, page 230].
		+ 1 h question time, in replacement of the lectures lost for the suspension of the activities on October 29th and 30th.
L14	12 nov 2018	Properties of Bloch electrons. Group velocity [AM 8]. Exercise on the lattice specific heat [Cazaux, problem 18, page 230 - continued].
L15	13 nov 2018	Exercise on acoustic and optical phonons. Exercise on the lattice specific heat [Cazaux, problem 11, page 215].
L16	15 nov 2018	Exercises on crystal structures, X-ray scattering, and lattice specific heat. + 1 h question time, in replacement of the lectures lost for the
147	110 nov 0010	suspension of the activities on October 29th and 30th.
	19 nov 2018 20 nov 2018	First mid-term assessment test. The Fermi surface. Density of states of Bloch electrons.

	Thermodynamic properties of Bloch electrons. Sommerfeld
	expansion. [AM 8, see also AM 2].
L19 22 nov 2018	Chemical potential and specific heat of Bloch electrons.
	Electrons in a weak periodic potential [AM 9].
	+ 1 h question time, in replacement of the lectures lost for the
	suspension of the activities on October 29th and 30th.
L20 26 nov 2018	The tight-binding method to calculate the electron bands in solids [AM 10].
L21 27 nov 2018	Examples of applications of the tight-binding method.
L22 29 nov 2018	Exercises on the tight-binding method.
	+ 1 h question time, in replacement of the lectures lost for the
	suspension of the activities on October 29th and 30th.
L23 4 dec 2018	The semiclassical model of Bloch electron dynamics. Motion
	in a uniform electric field. Motion in a uniform magnetic field.
	Closed and open orbits. [AM 12].
L24 6 dec 2018	The semiclassical theory of transport phenomena in metals.
105 // 1 00/0	The Boltzmann equation. Electrical conductivity [AM 13].
L25 11 dec 2018	Exercises on the tight-binding method. The tight-binding
10040 1 0040	model for polyacetylene.
L26 13 dec 2018	Homogeneous semiconductors [AM 28].
L27 18 dec 2018	Exercises on semiconductors [Cazaux, exercise 10, page 506;
	exercise 13, page 520]. The electrical conductivity of
1 00 00 dee 0040	semiconductors.
L28 20 dec 2018	Doped semiconductors. Predominantly extrinsic regime.
L29 8 jan 2019	Exercises on semiconductors.
L30 10 jan 2019	Exercises on semiconductors.
L31 15 jan 2019	Inhomogeneous semiconductors [AM 29]. Second mid-term assessment test.
L32 17 jan 2019	Second mid-lenn assessment lest.