TOPICS OF THE LECTURES OF CONDENSED MATTER PHYSICS

[AM X = Ashcroft Mermin Chapter X; LL X Y Z = Landau Lifshits vol X chap Y sec Z; HM X = Hansen McDonald Chapter X]

2h Introduction. The condensed phases of matter. The liquid phase. The van der Waals equation.
2h Correlation functions. Structure factor [HM 1]. The solid phase: amorphous and crystalline solids. Crystal lattices. Bravais Lattices in 1 and 2 dimensions 1h Bravais Lattices in three dimensions 2h Primitive vectors. Primitive cell. Conventional cell. Wigner- Seitz primitive cell. Lattices with a basis. The example of the honeycomb lattice. Reciprocal lattice and its properties [AM 4, see also AM 7].
 2h Exercises on Bravais lattices and reciprocal lattices. 1h Lattice planes. Miller indices [AM 5]. 2h X-ray diffraction from a crystal: Bragg's formulation. [AM 6].von Laue's formulation and its equivalence with Bragg's formulation. Ewald's construction. Ewald's sphere. von Laue's method. The rotating crystal method.
2h The Debye-Scherrer method. The structure factor. The atomic form factor. Exercises on X-ray scattering from crystals with the simple cubic, bcc, fcc and diamond structure. 1h Exercise on X-ray diffraction [AM problem 1 page
108] 2h Exercises on X-ray diffraction with the Debye-Scherrer method.
2h Exercises on X-ray diffraction with the Debye-Scherrer method. The Born-Oppenheimer approximation. 1h The harmonic approximation for lattice vibrations. 2h Normal modes of a one-dimensional Bravais lattice. Born- von Karman periodic boundary conditions. [AM 22]. Normal modes of a one-dimensional Bravais lattice with basis [AM 22]. Acoustic and optical modes.
General formulation of the theory of harmonic lattice vibrations. [AM 22: see also LL V VI 69]. Acoustic and optical modes. Born-von Karman periodic boundary conditions in a three-dimensional crystal.
The quantum theory of the harmonic crystal. Phonons. [AM 23].
The thermodynamics of phonons. Free energy and internal energy

L 28 2 nov 2022	The specific heat of solids. Einstein theory. Specific heath of optical modes. [AM 23].
L29,30 4 nov 2022	Debye theory of the specific heath. Debye's interpolating formula. [AM 23].
L31,32 8 nov 2022 L33 9 nov 2022	Exercise on the phonon mode of a linear crystal with basis Exercise on the phonon contribution to the specific heath at high and low temperatures
L34,35 11 nov 2022	Exercises on phonons.
L36,37 15 nov 2022	Electron states in a periodic potential. Bloch's theorem. [AM 8]. Periodic boundary conditions.
L38 16 nov 2022 L39,40 18 nov 2022	Second proof of Bloch's theorem. Quasimomentum. Energy bands. Metals and insulators. Density of states of Bloch electrons. The Fermi surface.
L41,42 22 nov 2022 L43 23 nov 2022 L44,45 25 nov 2022	Exercises on Bravais lattices, x-ray scattering, and phonons. Exercises on Bravais lattices, x-ray scattering, and phonons. First mid term assessment test.
L46,47 29 nov 2022	Thermodynamic properties of Bloch electrons. Sommerfeld expansion. [AM 8, see also AM 2]. Chemical potential and specific heat of Bloch electrons.
L48 30 nov 2022 L49,50 2 dec 2022	Electrons in a weak periodic potential [AM 9]. The tight-binding method to calculate the electron bands in solids [AM 10]. Examples of applications of the tight-binding method.
L51,52 6 dec 2022	The semiclassical model of Bloch electron dynamics. Group velocity. Effective mass. Motion in a uniform electric field. Motion in a uniform magnetic field. Closed and open orbits. [AM 12]. The Drude formula.
L53 7 dec 2022 L54,55 9 dec 2022	Exercises on the tight-binding method. Exercises on the tight-binding method.
L56,57 13 dec 2022 L58 14 dec 2022 L59,60 16 dec 2022	Homogeneous semiconductors [AM 28]. Exercises on homogeneous semiconductors. Doped semiconductors. Predominantly extrinsic regime. The electrical conductivity of semiconductors.
L61,62 20 dec 2022 L63 21 dec 2022	Exercises on doped semiconductors. Exercises on doped semiconductors.
L64,65 10 jan 2023 L66 11 jan 2023 L67,68 13 jan 2023	Exercises on Bloch electrons and tight binding. Exercises on tight binding. Exercises on tight binding.