Mid-term test of Condensed Matter Physics - january 14th 2022
Profs. S. Caprara and A. Polimeni

Exercise 1. A hexagonal lattice with lattice parameters ¢ = 0.45nm and ¢ = 0.70 nm (see left panel of Fig. 1, where
the conventional unit cell is shown and a primitive cell is highlighted with thicker lines) hosts a metallic element with
outer s orbitals, contributing one electron per primitive cell. Assume that the electron states can be described within
a tight-binding approximation, where only the nearest-neighbors transfer integrals in the basal plane, v, = 0.25eV,
and along the ¢ axis, 7. = 0.15eV, should be considered. All other transfer integrals and all overlap integrals are
negligible. The atomic energy of the s orbitals is E5 = —5.15eV and the tight-binding shift is 5 = 0.35eV.

1. [5 points] Determine the tight-binding dispersion law Ej, where k = (k;, ky, k) is the Bloch wave vector.

2. [8 points] Show that the minimum and maximum of the band are located at the I" and H points of first Brillouin
max

zone (see right panel of Fig. 1), respectively, then determine the extremal values of the band dispersion, Ep** and
Epr", and the band width W.

3. [2 points] Determine the electron density n (number of conduction electrons per unit volume).
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Exercise 2. An intrinsic semiconductor with direct gap is formed by a two-dimensional lattice of atoms with even
valence. The electron states of the semiconductor can be described within the nearly free electron model, so that the
energy vs. quasi-momentum dispersion law of the conduction and valence bands can be approximated by a parabolic
expression over the entire first Brillouin zone. Let F; = 0.900eV be the semiconductor fundamental band gap, and
m. = 0.05mg and m, = 0.10mg be the electron and hole effective mass (my is the free electron mass), respectively.

1. [5 points] Show that the energy densities of states per unit surface of the conduction and valence band, ¢.(F) and
gv»(E) respectively, are constant and determine their numerical values.

2. [5 points] Assuming that (E. — u) > kT and (u — E,) > kT, where E. is the bottom of the conduction band,
E, is the top of the valence band, and p is the chemical potential, determine the concentration of electrons and holes,
n and h, at T'= 300 K.

3. [5 points] At the same temperature, determine the variation of the chemical potential with respect to its value at
T = 0K, assuming that the temperature dependence of E. and F, can be neglected.

[Useful constants and conversion factors: A = 1.055 x 10734 J-s (Planck’s constant), kg = 1.381 x 10723 J.K~!
(Boltzmann’s constant), 1eV corresponds to 1.602 x 10719 J, the free electron mass is mg = 9.109 x 1073! kg.].



Solution of the Mid-term test of Condensed Matter Physics - January 14th 2022
Profs. S. Caprara and A. Polimeni

Exercise 1.

1. Let R, = (a,0,0), Ry = (%,i“—‘{g,O), and R, = (0,0, c), then we have
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=FE,—B—-2v {COS(/fza) + cos [g(km + \/gk'y)} + cos B(kx — \/gky)} } — 27, cos(k.c)

k. k
=F,—f3—27, lcos(kxa) + 2cos <2a> cos <\/§2ya>] — 27 cos(k.c).

2. The extrema of the band are located at the simultaneous solutions of the three equations

sin(kza) + sin (k;a> cos <\/§2kya> =0, cos (k‘;a) sin <\/§2kya> =0, sin(k,c) = 0.

The last equation has two inequivalent solutions k. = 0,Z. The first two equations have the three inequivalent

solutions k; = 0, k, = 0 (center I' of the basal hexagonal first Brillouin zone); k, = 0, k, = 2‘?{3” (equivalent under

point-group symmetry transformations to the midpoint @ of the side of the basal hexagonal first Brillouin zone in the
right panel of Fig. 1); k,, = g—g, k, = 0 (corner K of the basal hexagonal first Brillouin zone). All other extremal points
are equivalent to the above, either under translation by a reciprocal lattice vector, or under point-group symmetry
transformations of the hexagonal lattice.

The direct calculations shows that the minimum of the band is located at k; = k, = k, = 0 (T point), where
Enin = By — B8 — 67, — 27, = —7.30eV; the maximum is located at k, = 4—2, k, =0, k. = T (H point), where
Ep** = Eg — B+ 37a + 27, = —4.45¢eV. All other inequivalent extremal points are saddle points of the band
dispersion. The bandwidth is W = E#X — Elin = 9y, + 4, = 2.85¢eV.

3. The volume of the primitive cell is v = ?a%, and there is one conduction electron per primitive cell, so the
conduction electron density is
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= = 8.146 x 10*" m—3.
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Exercise 2.

1. The number of states within the k-space surface element 27k dk is given by dN?P = 2 x 2rk dk/(27/L)? = L;k dk,
where the spin degeneracy is taken into account, (2w/L)? is the k-space surface per permitted k value and L? is the
h’k? 1

surface of the two-dimensional crystal. Given that E = % and dk = 534/ %ﬂ dFE one gets the energy density of

states for the conduction band

idNCQD _ M
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72 db =g.(F) = e 2.089 x 10" eV™" -m™~.

Similarly, one gets the energy density of states for the valence band

1 dN32P My 17 oy—1 .2
T2 dE =g,(F) = s =4.178 x 10" eV ™" -m™“.
2. The electron concentration is given by
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where 8 = 1/(kpT). Similarly, one finds for the hole concentration

E,
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Since the semiconductor is intrinsic, from the law of mass action we obtain

n(T) = h(T) = v/a(T) (T) = kT ¥ e PF0/2 = 2,105 x 10°m ™.
e

3. From
o) | Me pep-E-E)
h(T) My
we obtain
1 1 My
T)==(E.+ E,) + kTl .
W(T) = (E.+ Eu) + 3haTlog o
Hence,
1 v
u(T) = u(0) = SkpTlog v _ 8.96meV.
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