
Mid-term test of Condensed Matter Physics - january 14th 2022
Profs. S. Caprara and A. Polimeni

Exercise 1. A hexagonal lattice with lattice parameters a = 0.45 nm and c = 0.70 nm (see left panel of Fig. 1, where
the conventional unit cell is shown and a primitive cell is highlighted with thicker lines) hosts a metallic element with
outer s orbitals, contributing one electron per primitive cell. Assume that the electron states can be described within
a tight-binding approximation, where only the nearest-neighbors transfer integrals in the basal plane, γa = 0.25 eV,
and along the c axis, γc = 0.15 eV, should be considered. All other transfer integrals and all overlap integrals are
negligible. The atomic energy of the s orbitals is Es = −5.15 eV and the tight-binding shift is β = 0.35 eV.

1. [5 points] Determine the tight-binding dispersion law Ek, where k = (kx, ky, kz) is the Bloch wave vector.

2. [8 points] Show that the minimum and maximum of the band are located at the Γ and H points of first Brillouin
zone (see right panel of Fig. 1), respectively, then determine the extremal values of the band dispersion, Emax

k and
Emin

k , and the band width W .

3. [2 points] Determine the electron density n (number of conduction electrons per unit volume).
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Fig. 1.

Exercise 2. An intrinsic semiconductor with direct gap is formed by a two-dimensional lattice of atoms with even
valence. The electron states of the semiconductor can be described within the nearly free electron model, so that the
energy vs. quasi-momentum dispersion law of the conduction and valence bands can be approximated by a parabolic
expression over the entire first Brillouin zone. Let Eg = 0.900 eV be the semiconductor fundamental band gap, and
mc = 0.05m0 and mv = 0.10m0 be the electron and hole effective mass (m0 is the free electron mass), respectively.

1. [5 points] Show that the energy densities of states per unit surface of the conduction and valence band, gc(E) and
gv(E) respectively, are constant and determine their numerical values.

2. [5 points] Assuming that (Ec − µ)� kBT and (µ− Ev)� kBT , where Ec is the bottom of the conduction band,
Ev is the top of the valence band, and µ is the chemical potential, determine the concentration of electrons and holes,
n and h, at T = 300 K.

3. [5 points] At the same temperature, determine the variation of the chemical potential with respect to its value at
T = 0 K, assuming that the temperature dependence of Ec and Ev can be neglected.

[Useful constants and conversion factors: ~ = 1.055 × 10−34 J·s (Planck’s constant), kB = 1.381 × 10−23 J·K−1
(Boltzmann’s constant), 1 eV corresponds to 1.602× 10−19 J, the free electron mass is m0 = 9.109× 10−31 kg.].
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Exercise 1.

1. Let Ra = (a, 0, 0), R± = (a2 ,±
a
√
3

2 , 0), and Rc = (0, 0, c), then we have

Ek = Es − β −
∑
R

γ(R) eik·R = Es − β − γa
∑

R=±Ra,
±R±

eik·R − γc
∑

R=±Rc

eik·R

= Es − β − 2γa

{
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3ky)
]
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]}
− 2γc cos(kzc)

= Es − β − 2γa

[
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)
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(√
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− 2γc cos(kzc).

2. The extrema of the band are located at the simultaneous solutions of the three equations

sin(kxa) + sin

(
kxa

2

)
cos

(√
3kya

2

)
= 0, cos

(
kxa

2

)
sin

(√
3kya

2

)
= 0, sin(kzc) = 0.

The last equation has two inequivalent solutions kz = 0, πc . The first two equations have the three inequivalent

solutions kx = 0, ky = 0 (center Γ of the basal hexagonal first Brillouin zone); kx = 0, ky = 2
√
3π

3a (equivalent under
point-group symmetry transformations to the midpoint Q of the side of the basal hexagonal first Brillouin zone in the
right panel of Fig. 1); kx = 4π

3a , ky = 0 (corner K of the basal hexagonal first Brillouin zone). All other extremal points
are equivalent to the above, either under translation by a reciprocal lattice vector, or under point-group symmetry
transformations of the hexagonal lattice.

The direct calculations shows that the minimum of the band is located at kx = ky = kz = 0 (Γ point), where
Emin

k = Es − β − 6γa − 2γc = −7.30 eV; the maximum is located at kx = 4π
3a , ky = 0, kz = π

c (H point), where
Emax

k = Es − β + 3γa + 2γc = −4.45 eV. All other inequivalent extremal points are saddle points of the band
dispersion. The bandwidth is W = Emax

k − Emin
k = 9γa + 4γc = 2.85 eV.

3. The volume of the primitive cell is v =
√
3
2 a

2c, and there is one conduction electron per primitive cell, so the
conduction electron density is

n =
1

v
=

2
√

3

3 a2c
= 8.146× 1027 m−3.



Exercise 2.

1. The number of states within the k-space surface element 2πk dk is given by dN2D = 2×2πk dk/(2π/L)2 = L2

π k dk,

where the spin degeneracy is taken into account, (2π/L)2 is the k-space surface per permitted k value and L2 is the

surface of the two-dimensional crystal. Given that E = ~2k2

2m and dk = 1
2~

√
2m
E dE one gets the energy density of

states for the conduction band

1

L2

dN2D
c

dE
= gc(E) =

mc

π~2
= 2.089× 1017 eV−1 ·m−2.

Similarly, one gets the energy density of states for the valence band

1

L2

dN2D
v

dE
= gv(E) =

mv

π~2
= 4.178× 1017 eV−1 ·m−2.

2. The electron concentration is given by

n(T ) =

∫ +∞

Ec

dE gc(E)
1

eβ(E−µ) + 1
≈ mc

π~2
kBT e−β(Ec−µ),

where β = 1/(kBT ). Similarly, one finds for the hole concentration

h(T ) =

∫ Ev

−∞
dE gv(E)

1

eβ(µ−E) + 1
≈ mv

π~2
kBT e−β(µ−Ev).

Since the semiconductor is intrinsic, from the law of mass action we obtain

n(T ) = h(T ) =
√
n(T )h(T ) = kBT

√
mcmv

π~2
e−βEg/2 = 2.105× 108 m−2.

3. From

n(T )

h(T )
= 1 =

mc

mv
eβ(2µ−Ec−Ev)

we obtain

µ(T ) =
1

2
(Ec + Ev) +

1

2
kBT log

mv

mc
.

Hence,

µ(T )− µ(0) =
1

2
kBT log

mv

mc
= 8.96 meV.


