Mid-term test of Condensed Matter Physics - january 14th 2022 Profs. S. Caprara and A. Polimeni

Exercise 1. A hexagonal lattice with lattice parameters $a = 0.45$ nm and $c = 0.70$ nm (see left panel of Fig. 1, where the conventional unit cell is shown and a primitive cell is highlighted with thicker lines) hosts a metallic element with outer s orbitals, contributing one electron per primitive cell. Assume that the electron states can be described within a tight-binding approximation, where only the nearest-neighbors transfer integrals in the basal plane, $\gamma_a = 0.25 \text{ eV}$, and along the c axis, $\gamma_c = 0.15 \,\text{eV}$, should be considered. All other transfer integrals and all overlap integrals are negligible. The atomic energy of the s orbitals is $E_s = -5.15 \text{ eV}$ and the tight-binding shift is $\beta = 0.35 \text{ eV}$.

1. [5 points] Determine the tight-binding dispersion law E_k , where $k = (k_x, k_y, k_z)$ is the Bloch wave vector.

2. [8 points] Show that the minimum and maximum of the band are located at the Γ and H points of first Brillouin zone (see right panel of Fig. 1), respectively, then determine the extremal values of the band dispersion, $E_{\mathbf{k}}^{\max}$ and $E_{\mathbf{k}}^{\min}$, and the band width W.

3. [2 points] Determine the electron density n (number of conduction electrons per unit volume).

Exercise 2. An intrinsic semiconductor with direct gap is formed by a two-dimensional lattice of atoms with even valence. The electron states of the semiconductor can be described within the nearly free electron model, so that the energy vs. quasi-momentum dispersion law of the conduction and valence bands can be approximated by a parabolic expression over the entire first Brillouin zone. Let $E_g = 0.900 \text{ eV}$ be the semiconductor fundamental band gap, and $m_c = 0.05 m_0$ and $m_v = 0.10 m_0$ be the electron and hole effective mass $(m_0$ is the free electron mass), respectively.

1. [5 points] Show that the energy densities of states per unit surface of the conduction and valence band, $g_c(E)$ and $g_v(E)$ respectively, are constant and determine their numerical values.

2. [5 points] Assuming that $(E_c - \mu) \gg k_B T$ and $(\mu - E_v) \gg k_B T$, where E_c is the bottom of the conduction band, E_v is the top of the valence band, and μ is the chemical potential, determine the concentration of electrons and holes, n and h, at $T = 300$ K.

3. [5 points] At the same temperature, determine the variation of the chemical potential with respect to its value at $T = 0$ K, assuming that the temperature dependence of E_c and E_v can be neglected.

[Useful constants and conversion factors: $\hbar = 1.055 \times 10^{-34}$ J·s (Planck's constant), $k_B = 1.381 \times 10^{-23}$ J·K⁻¹ (Boltzmann's constant), 1 eV corresponds to 1.602×10^{-19} J, the free electron mass is $m_0 = 9.109 \times 10^{-31}$ kg.].

Solution of the Mid-term test of Condensed Matter Physics - January 14th 2022 Profs. S. Caprara and A. Polimeni

Exercise 1.

1. Let $\mathbf{R}_a = (a, 0, 0), \, \mathbf{R}_{\pm} = (\frac{a}{2}, \pm \frac{a\sqrt{3}}{2}, 0), \text{ and } \mathbf{R}_c = (0, 0, c), \text{ then we have}$

$$
E_{\mathbf{k}} = E_s - \beta - \sum_{\mathbf{R}} \gamma(\mathbf{R}) e^{i\mathbf{k} \cdot \mathbf{R}} = E_s - \beta - \gamma_a \sum_{\substack{\mathbf{R} = \pm \mathbf{R}_a, \\ \pm \mathbf{R}_+}} e^{i\mathbf{k} \cdot \mathbf{R}} - \gamma_c \sum_{\mathbf{R} = \pm \mathbf{R}_c} e^{i\mathbf{k} \cdot \mathbf{R}}
$$

$$
= E_s - \beta - 2\gamma_a \left\{ \cos(k_x a) + \cos\left[\frac{a}{2}(k_x + \sqrt{3}k_y)\right] + \cos\left[\frac{a}{2}(k_x - \sqrt{3}k_y)\right] \right\} - 2\gamma_c \cos(k_z c)
$$

$$
= E_s - \beta - 2\gamma_a \left[\cos(k_x a) + 2 \cos\left(\frac{k_x a}{2}\right) \cos\left(\frac{\sqrt{3}k_y a}{2}\right) \right] - 2\gamma_c \cos(k_z c).
$$

2. The extrema of the band are located at the simultaneous solutions of the three equations

$$
\sin(k_x a) + \sin\left(\frac{k_x a}{2}\right)\cos\left(\frac{\sqrt{3}k_y a}{2}\right) = 0, \qquad \cos\left(\frac{k_x a}{2}\right)\sin\left(\frac{\sqrt{3}k_y a}{2}\right) = 0, \qquad \sin(k_z c) = 0.
$$

The last equation has two inequivalent solutions $k_z = 0, \frac{\pi}{c}$. The first two equations have the three inequivalent solutions $k_x = 0$, $k_y = 0$ (center Γ of the basal hexagonal first Brillouin zone); $k_x = 0$, $k_y = \frac{2\sqrt{3}\pi}{3a}$ (equivalent under point-group symmetry transformations to the midpoint Q of the side of the basal hexagonal first Brillouin zone in the right panel of Fig. 1); $k_x = \frac{4\pi}{3a}$, $k_y = 0$ (corner K of the basal hexagonal first Brillouin zone). All other extremal points are equivalent to the above, either under translation by a reciprocal lattice vector, or under point-group symmetry transformations of the hexagonal lattice.

The direct calculations shows that the minimum of the band is located at $k_x = k_y = k_z = 0$ (Γ point), where $E_{\mathbf{k}}^{\min} = E_s - \beta - 6\gamma_a - 2\gamma_c = -7.30 \text{ eV}$; the maximum is located at $k_x = \frac{4\pi}{3a}$, $k_y = 0$, $k_z = \frac{\pi}{c}$ (*H* point), where $E_k^{\text{max}} = E_s - \beta + 3\gamma_a + 2\gamma_c = -4.45 \text{ eV}$. All other inequivalent extremal points are saddle points of the band dispersion. The bandwidth is $W = E_{\mathbf{k}}^{\max} - E_{\mathbf{k}}^{\min} = 9\gamma_a + 4\gamma_c = 2.85 \text{ eV}.$

3. The volume of the primitive cell is $v = \frac{\sqrt{3}}{2}a^2c$, and there is one conduction electron per primitive cell, so the conduction electron density is

$$
n = \frac{1}{v} = \frac{2\sqrt{3}}{3 a^2 c} = 8.146 \times 10^{27} \,\mathrm{m}^{-3}.
$$

Exercise 2.

1. The number of states within the k-space surface element $2\pi k \, \mathrm{d}k$ is given by $\mathrm{d}N^{2D} = 2 \times 2\pi k \, \mathrm{d}k/(2\pi/L)^2 = \frac{L^2}{\pi}$ $\frac{L}{\pi}k \,dk,$ where the spin degeneracy is taken into account, $(2\pi/L)^2$ is the k-space surface per permitted k value and L^2 is the surface of the two-dimensional crystal. Given that $E = \frac{\hbar^2 k^2}{2m}$ and $dk = \frac{1}{2\hbar} \sqrt{\frac{2m}{E}} dE$ one gets the energy density of states for the conduction band

$$
\frac{1}{L^2} \frac{dN_c^{2D}}{dE} = g_c(E) = \frac{m_c}{\pi \hbar^2} = 2.089 \times 10^{17} \,\text{eV}^{-1} \cdot \text{m}^{-2}.
$$

Similarly, one gets the energy density of states for the valence band

$$
\frac{1}{L^2} \frac{dN_v^{2D}}{dE} = g_v(E) = \frac{m_v}{\pi \hbar^2} = 4.178 \times 10^{17} \,\text{eV}^{-1} \cdot \text{m}^{-2}.
$$

2. The electron concentration is given by

$$
n(T) = \int_{E_c}^{+\infty} dE \, g_c(E) \frac{1}{e^{\beta(E-\mu)} + 1} \approx \frac{m_c}{\pi \hbar^2} k_B T e^{-\beta(E_c-\mu)},
$$

where $\beta = 1/(k_BT)$. Similarly, one finds for the hole concentration

$$
h(T) = \int_{-\infty}^{E_v} dE \, g_v(E) \frac{1}{e^{\beta(\mu - E)} + 1} \approx \frac{m_v}{\pi \hbar^2} k_B T e^{-\beta(\mu - E_v)}.
$$

Since the semiconductor is intrinsic, from the law of mass action we obtain

$$
n(T) = h(T) = \sqrt{n(T) h(T)} = k_B T \frac{\sqrt{m_c m_v}}{\pi \hbar^2} e^{-\beta E_g/2} = 2.105 \times 10^8 \,\mathrm{m}^{-2}.
$$

3. From

$$
\frac{n(T)}{h(T)} = 1 = \frac{m_c}{m_v} e^{\beta(2\mu - E_c - E_v)}
$$

we obtain

$$
\mu(T) = \frac{1}{2}(E_c + E_v) + \frac{1}{2}k_B T \log \frac{m_v}{m_c}.
$$

Hence,

$$
\mu(T) - \mu(0) = \frac{1}{2} k_B T \log \frac{m_v}{m_c} = 8.96 \,\text{meV}.
$$