
Mid-term assessment test of Condensed Matter Physics - January 17th 2019
Profs. S. Caprara and A. Polimeni

Exercise 1: Tight binding.

A square lattice with lattice constant a = 0.1 nm is formed by a unit cell containing one atom with one valence
electron (see Fig. 1). The wavefunction φ1s(r) of the valence electron is s-type (and real).

1. Write the expression of the resulting energy band dispersion E(kx, ky) in the tight-binding approximation consider-
ing the contributions from the first- and second-neighbours, only. Neglect the overlap integral and assume the values
of the “transfer integral” γi ≡ γ(Ri) = −

∫
dr φ1s(r)∆U(r)φ1s(r − Ri) equal to γ1 = +1 eV and γ2 = +0.25 eV

for the first- and second-neighbours, respectively. Indicate with Es the energy level of the atomic s orbital and let
β = γ(R = 0). [The numerical values of these two parameters are not needed to answer the following questions].

2. Evaluate the band amplitude (in eV) as the energy difference between the band minimum and maximum in k-space.

3. Evaluate the electron effective mass mxx (in kg) along the x direction at the Γ = (kx = 0, ky = 0) point.

[Note that 1 eV corresponds to an energy of 1.60 × 10−19 J, and the Planck constant is ~ = 1.05 × 10−34 J·s].

A square lattice with lattice constant a =0.1 nm is formed by a unit cell containing one atom 
with one valence electron. The wavefunction 𝜙1𝑠(𝑟) of the valence electron is s-type (and 
real). 
1) Write the resulting energy band dispersion E(kx,ky) in the tight-binding approximation 
considering the contributions from the first- and second-neighbours, only. Neglect the 
overlap integral and assume the values of the “transfer integral” 
𝛾𝑖 = − ∫ 𝑑𝒓𝜙1𝑠

∗ (𝒓)Δ𝑈(𝒓)𝜙1𝑠(𝒓 − 𝑹𝑖) equal to 𝛾1 = +1.0 eV and 𝛾2 = +0.5 eV for the first- 
and second-neighbours, respectively. 
2) Evaluate the band amplitude as the energy difference between the band minimum and 
maximum in k-space. 
3) Evaluate the electron effective mass along the �̂� direction in the * (kx=0,ky=0) point. 
 
 

 

 

 

 

 

Solution 

 

𝐸(𝑘𝑥, 𝑘𝑦) = 𝐸𝑠 − 𝛽 − ∑ 𝛾(𝑹)𝑒𝑖𝒌∙𝑹
𝑹=𝑹1,𝑹2 , where 𝑹1 = (±𝑎, 0); (0, ±𝑎), 𝑹2 = (±𝑎, ±𝑎) 

and 𝒌 = (𝑘𝑥, 𝑘𝑦). Then 

𝐸(𝑘𝑥, 𝑘𝑦) = 𝐸𝑠 − 𝛽 − 2𝛾1[𝑐𝑜𝑠(𝑘𝑥𝑎) + 𝑐𝑜𝑠(𝑘𝑦𝑎)] − 4𝛾2[𝑐𝑜𝑠(𝑘𝑥𝑎)𝑐𝑜𝑠(𝑘𝑦𝑎)] 

Minimum and maximum for 

𝐸(𝑘𝑥, 𝑘𝑦)
𝜕𝑘𝑥

= 2𝛾1𝑎 𝑠𝑖𝑛(𝑘𝑥𝑎) + 4𝛾2𝑎 𝑐𝑜𝑠(𝑘𝑦𝑎)𝑠𝑖𝑛(𝑘𝑥𝑎) = 0 

and 

𝐸(𝑘𝑥, 𝑘𝑦)
𝜕𝑘𝑦

= 2𝛾1𝑎 𝑠𝑖𝑛(𝑘𝑦𝑎) + 4𝛾2𝑎 𝑐𝑜𝑠(𝑘𝑥𝑎)𝑠𝑖𝑛(𝑘𝑦𝑎) = 0 

Minimum for (𝑘𝑥, 𝑘𝑦) = (0,0) and maximum for (𝑘𝑥, 𝑘𝑦) = (𝜋/𝑎, 𝜋/𝑎). 

𝐸(𝑚𝑖𝑛) = 𝐸𝑠 − 𝛽 − 4𝛾1 − 4𝛾2 

𝐸(𝑚𝑎𝑥) = 𝐸𝑠 − 𝛽 + 4𝛾1 − 4𝛾2 

The band amplitude is 8𝛾1 = 8 𝑒𝑉. 

The electron effective mass along the x axis is 

𝑚𝑥𝑥 = ℏ2

2𝑎2(𝛾1 +2𝛾2 )
= 1.74 × 10−30 kg. 

Fig. 1.

Exercise 2: Semiconductors.

Consider an intrinsic semiconductor that can be described as a two band system, with band gap Eg = 0.75 eV
(assumed to be temperature independent), effective mass of the electrons in the conduction band mc = 0.2m0 and
effective mass of the holes in the valence band mv = 0.3m0, where m0 = 9.11 × 10−31 kg is the free electron mass.
Assume the origin of the energies at the top of the valence band, εv, so that εv = 0 and the bottom of the conduction
band is εc = Eg.

1. Calculate the density of electrons in the conduction band nc, the density of holes in the valence band pv, and the
value of the chemical potential µi (in eV, the subscript i indicates that the quantity refers to the intrinsic regime) at
a temperature T = 300 K.

[Note that 1 eV corresponds to a temperature of 1.16 × 104 K or to an energy of 1.60 × 10−19 J, the Planck constant
is ~ = 1.05 × 10−34 J·s, and the Boltzmann constant is κB = 1.38 × 10−23 J·K−1].

2. Suppose now that the system is doped with a density Nd = 5 × 1020 m−3 of donor atoms and a density Na =
2× 1020 m−3 of acceptor atoms (each atom donates or accepts one electron). Assuming that at T = 300 K the system
is in the predominantly extrinsic regime, and that donors and acceptors are fully ionized, calculate the density of
electrons in the conduction band nc, the density of holes in the valence band pv, and the value of the chemical potential
µ (in eV). Based on your results, show that the assumption of a predominantly extrinsic regime is consistent.



Solution of the mid-term assessment test
Profs. S. Caprara and A. Polimeni

Exercise 1.

1. We have

E(kx, ky) = Es − β −
∑

R=R1,R2

γ(R) eik·R,

where R1 = (±a, 0); (0,±a), R2 = (±a,±a), and k = (kx, ky). Then

E(kx, ky) = Es − β − 2γ1 [cos(kxa) + cos(kya)] − 4γ2 cos(kxa) cos(kya).

2. Setting to zero the derivatives

∂E

∂kx
(kx, ky) = 2γ1a sin(kxa) + 4γ2a sin(kxa) cos(kya),

∂E

∂ky
(kx, ky) = 2γ1a sin(kya) + 4γ2a cos(kxa) sin(kya),

we find the minimum at (kx, ky) = (0, 0) and the maximum at (kx, ky) =
(
π
a ,

π
a

)
. Since

E(min) = Es − β − 4γ1 − 4γ2, E(max) = Es − β + 4γ1 − 4γ2,

the band amplitude is E(max) − E(min) = 8γ1 = 8 eV.

3. The electron effective mass along the x axis is

mxx =
~2

2a2(γ1 + 2γ2)
= 2.31 × 10−30 kg.

Exercise 2.

1. The gap is Eg = 1.20 × 10−19 J, hence Eg/κB = 8.70 × 103 K. The thermal energy is κBT = 4.14 × 10−21 J=
2.58 × 10−2 eV, hence Eg/2κBT = 14.5. The number of intrinsic carriers is

ni =
1

4

(
2κBT

π~2

)3/2

(mcmv)
3/4 e−Eg/2κBT = 1.53 × 1018 m−3

and nc = pv = ni. The chemical potential is

µi =
Eg
2

+
3

4
κBT log

mv

mc
= 0.383 eV.

2. The doped semiconductor is n-type, because the number of donors exceeds the number of acceptors. If the dopants
are fully ionized

nc ≈ Nd −Na = 3 × 1020 m−3, pv ≈
n2i

Nd −Na
= 7.80 × 1015 m−3.

The chemical potential is

µ ≈ µi + κBT log
Nd −Na

ni
= 0.519 eV.

Since Na, Nd � ni, the assumption of a predominantly extrinsic regime is consistent.


