Second mid-term test of Condensed Matter Physics - January 17th 2023 Profs. S. Caprara and A. Polimeni

Exercise 1: Tight binding.

Consider a one-dimensional lattice with lattice spacing $a = 0.6$ nm. The lattice hosts a biatomic compound AB, and the A–B bonds in the crystal are alternately short and long, with length $a_S = a/3 = 0.2$ nm and $a_L = 2a/3 = 0.4$ nm, respectively (see Fig. 1; NOTICE that the final solution does not depend on the specific values of a_S and a_L , as long as $a_S + a_L = a$). The outer orbitals of both A and B atoms are s orbitals, with atomic energies $\varepsilon_A = -5.0 \text{ eV}$ and $\varepsilon_B = -5.3 \text{ eV}$, respectively. Asssume that the electron states of the given lattice can be described within the tight-binding approach with attractive lattice potential, and that the transfer integral for short and long bonds are $\gamma_S = 0.3$ eV and $\gamma_L = 0.1$ eV, respectively. All other transfer integrals, all overlap integrals and the β integrals can be neglected altogether. Indicate with $k \in \left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$ the one-dimensional wave vector, and with b_A and b_B the coefficients of the linear combination of s orbitals of A and B atoms.

1. [5 points] Find the expressions of the dispersion laws for the conduction and valence band, respectively, $\varepsilon_c(k)$ and $\varepsilon_v(k)$.

2. [4 points] Calculate the numerical value of the velocity v_k of an electron in the valence band with with wave vector $k=\frac{\pi}{2a}.$

3. [6 points] Determine the numerical value of the band gap E_q that separates the conduction and valence band and its location within the first Brillouin zone.

Exercise 2: Semiconductors.

Consider an intrinsic three-dimensional semiconductor, whose chemical potential μ_i stays in the middle of the gap independently of the temperature. At $T = 500 \text{ K}$ the density of electrons in the conduction band is $n_c = 1.27 \times$ 10^{14} cm⁻³, while at $T = 600$ K $n_c = 9.92 \times 10^{14}$ cm⁻³.

- 1. [6 points] Determine the numerical value of the band gap energy E_q .
- 2. [5 points] Determine the numerical value of the electron and hole effective masses, m_c and m_v , respectively.

3. [4 points] It is found that the conductivity of the semiconductor at $T = 500 \text{ K}$ is $\sigma = 20 \Omega^{-1} \text{·m}^{-1}$ and that the electron mobility $\tilde{\mu}_e$ is four times greater than the hole mobility $\tilde{\mu}_h$. Determine the electron and hole relaxation time (namely, the average time between two collisions), τ_e and τ_h , respectively.

[Useful constants and conversion factors: the reduced Planck constant is $\hbar = 1.05 \times 10^{-34}$ J·s, the Boltzmann constant is $\kappa_B = 1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$, the elementary charge is $e = 1.60 \times 10^{-19} \text{ C}$, the free electron mass is $m_0 = 9.11 \times 10^{-31} \text{ kg}$; 1 eV corresponds to a temperature of 1.16×10^4 K or to an energy of 1.60×10^{-19} J.

Solution Profs. S. Caprara and A. Polimeni

Exercise 1.

1. We introduce the complex quantity

$$
\Gamma_k \equiv \gamma_{\rm S} e^{ika_{\rm S}} + \gamma_{\rm L} e^{-ika_{\rm L}}.
$$

Then, the tight-binding equations take the form of the 2×2 system of homogeneous equations

$$
\begin{cases} [\varepsilon_{A} - \varepsilon(k)]b_{A} - \Gamma_{k}b_{B} = 0, \\ -\Gamma_{k}^{*}b_{A} + [\varepsilon_{B} - \varepsilon(k)]b_{B} = 0. \end{cases}
$$

The systems admits non-trivial solutions if the energy $\varepsilon(k)$ is an eigenvalue of the linear problem,

$$
\varepsilon_{\pm}(k) = \frac{\varepsilon_{\rm A} + \varepsilon_{\rm B}}{2} \pm \sqrt{\left(\frac{\varepsilon_{\rm A} - \varepsilon_{\rm B}}{2}\right)^2 + |\Gamma_k|^2},
$$

with

$$
|\Gamma_k|^2 = \gamma_S^2 + \gamma_L^2 + 2\gamma_S\gamma_L \cos(ka),
$$

where we used the fact that $a_S + a_L = a$. The conduction band is $\varepsilon_c(k) = \varepsilon_+(k)$ and the valence band is $\varepsilon_v(k) = \varepsilon_-(k)$.

2. The required velocity is

$$
v_{k=\frac{\pi}{2a}} = \frac{1}{\hbar} \frac{\partial \varepsilon_v}{\partial k} \bigg|_{k=\frac{\pi}{2a}} = \frac{a\gamma_S \gamma_L \sin(ka)}{\hbar \sqrt{\left(\frac{\varepsilon_A - \varepsilon_B}{2}\right)^2 + |\Gamma_k|^2}} \bigg|_{k=\frac{\pi}{2a}} = \frac{a\gamma_S \gamma_L}{\hbar \sqrt{\left(\frac{\varepsilon_A - \varepsilon_B}{2}\right)^2 + \gamma_S^2 + \gamma_L^2}} = 7.81 \times 10^4 \,\mathrm{m/s}.
$$

3. $|\Gamma_k|^2$ is minimum at $k = \frac{\pi}{a}$, where $|\Gamma_k|^2 = (\gamma_{\rm S} - \gamma_{\rm L})^2$ and is maximum at $k = 0$, where $|\Gamma_k|^2 = (\gamma_{\rm S} + \gamma_{\rm L})^2$. Then, the band gap is located at $k = \frac{\pi}{a}$ and

$$
E_g = 2\sqrt{\left(\frac{\varepsilon_{\rm A} - \varepsilon_{\rm B}}{2}\right)^2 + (\gamma_{\rm S} - \gamma_{\rm L})^2} = 0.5 \,\text{eV}.
$$

Exercise 2.

1. The fact that the chemical potential μ_i is independent of the temperature indicates that $m_c = m_v$. Furthermore, since $\tilde{\mu}_e = 4\tilde{\mu}_h$ and the electron and hole masses are equal, we deduce that $\tau_e = 4\tau_h$. The ratio of the densities of electrons in the conduction band at the two given temperatures is

$$
\frac{n_c(T = 500 \text{ K})}{n_c(T = 600 \text{ K})} = \left(\frac{5}{6}\right)^{3/2} e^{\frac{E_g}{2\kappa_B} \left(\frac{1}{600 \text{ K}} - \frac{1}{500 \text{ K}}\right)}.
$$

The text assigns to this ratio the value 0.128, hence $E_g = 0.921 \text{ eV}$.

2. From

$$
n_c(T = 500 \text{ K}) = 2.5 \left(\frac{5}{3} \frac{m_c}{m_0}\right)^{3/2} \text{ e}^{-\frac{0.921 \text{ eV}}{2\kappa_B 500 \text{ K}}} 10^{19} \text{ cm}^{-3},
$$

one finds $m_c = 0.220 m_0$.

3. We know that $\sigma = en_i(\tilde{\mu}_e + \tilde{\mu}_h) = 5en_i\tilde{\mu}_h = 5e^2n_c\tau_h/m_c$. Then, one finds $\tau_h = 2.46 \times 10^{-13}$ s and $\tau_e = 4\tau_h = 9.84 \times 10^{-13}$ s. $9.84\times10^{-13}\,\mathrm{s}.$