Mid-term test of Condensed Matter Physics - December 17th 2021 Profs. S. Caprara and A. Polimeni

Exercise 1. Figure 1 (a) shows the diffraction pattern obtained with a sample of an elemental crystal featuring cubic symmetry, by means of the powder (or Debye-Scherrer) method, using a radiation with wavelength $\lambda = 0.1542$ nm.

1. [8 points] Determine the Bravais lattice type of the sample and the lattice parameter a of the conventional cubic cell, obtained as the average of the values calculated from each peak. In addition, associate to each peak the corresponding Miller indices (hkl).

2. [7 points] Figure 1 (b) shows the phonon dispersion curves of the same crystal along a high-symmetry direction of the first Brillouin zone (along this direction, the transverse sound modes are degenerate). Determine the effective elastic constants of the lattice, K_{ℓ} and K_{t} , assuming that the mass associated to a Bravais lattice point is $M = 3.053 \times 10^{-25}$ kg for both longitudinal and transverse modes.

Exercise 2. Fluorite (calcium fluoride, CaF₂) forms fcc crystals, has molar mass $\mu = 7.81 \times 10^{-2}$ kg/mol, and density $\rho = 3.18 \times 10^3$ kg/m³. The velocity of sound in fluorite (averaged with respect to the directions) is $c_{\ell} = 6.50 \times 10^3$ m/s and $c_t = 3.98 \times 10^3$ m/s, for longitudinal and transverse modes, respectively. Adopt a scheme where the optical phonons are described within the Einstein model and the acoustic phonons are described within the Debye model.

1. [3 points] Determine the number of optical branches that are observed when probing the phonon spectrum of fluorite.

2. [7 points] Determine the side *a* of the conventional fcc unit cell, the Debye wave vector $q_{\rm D}$, the average sound velocity $c_{\rm D}$, and the Debye temperature of sound modes $\Theta_{\rm D}$ of fluorite.

3. [5 points] Calculate the specific heat c_v of fluorite at a temperature T = 1 K, assuming that the contribution of the optical modes can be neglected altogether.

[Useful constants: $\hbar = 1.055 \times 10^{-34} \,\text{J}\cdot\text{s}$ (Planck's constant), $N_{\text{A}} = 6.02 \times 10^{23} \,\text{mol}^{-1}$ (Avogadro's constant), $\kappa_{\text{B}} = 1.38 \times 10^{-23} \,\text{J/K}$ (Boltzmann's constant)].

Exercise 1.

1. Considering the plane spacing from the Bragg law $d = \lambda/(2\sin\theta)$, where $d = a/\sqrt{h^2 + k^2 + l^2}$, one obtains the following table:

n	29 (°)	<i>d</i> (nm)	(d _n /d ₁) ² n=1,,5	hkl	ratio	<i>a</i> (nm)	
1′	40.307	0.22378	1.00000	100	1/1	0.22378	
1	40.307	0.22378	1.00000	110	2/2	0.31647	
2′	58.256	0.15839	1.99603	110	2/1	0.22400	
2	58.256	0.15839	1.99603	200	4/2	0.31679	
3'	73.264	0.12922	2.99921	111	3/1	0.22382	
3	73.264	0.12922	2.99921	211	6/2	0.31651	
4′	87.152	0.11185	4.00286	200	4/1	0.22370	
4	87.152	0.11185	4.00286	220	8/2	0.31636	
5′	100.79	0.10007	5.00071	210	5/1	0.22376	
5	100.79	0.10007	5.00071	310	10/2	0.31645	

According to the lattice plane selection rules

${hkl}$	$N = h^2 + k^2 + l^2$	Multiplicity	cubic	bcc	fcc
100	1	6	\checkmark		
110	2	12	\checkmark	\checkmark	
111	3	8	\checkmark		\checkmark
200	4	6	\checkmark	\checkmark	\checkmark
210	5	24	\checkmark		
211	6	24	\checkmark	\checkmark	
220	8	12	\checkmark	\checkmark	\checkmark
221	9	24	\checkmark		
300	9	6	\checkmark		
310	10	24	\checkmark	\checkmark	
311	11	24	\checkmark		\checkmark
222	12	8	\checkmark	\checkmark	\checkmark
:	:				
•	·				

we find that the crystal is compatible with either a BCC or a SC Bravais lattice. The average lattice constant is a = 0.3165 nm (BCC) or a' = 0.2238 nm (SC). The two lattices become distinguishable when seven Bragg peaks are considered.

2. Taking the slope of the curves we obtain the sound velocities $v_{\ell} = 4590 \text{ m/s}$ and $v_{t} = 2553 \text{ m/s}$. Then, $K_s = M(v_s/a)^2$, hence $K_{\ell} = 64.2 \text{ N/m}$ and $K_t = 19.9 \text{ N/m}$ in the BCC case, or $K'_{\ell} = 128.4 \text{ N/m}$ and $K'_t = 39.8 \text{ N/m}$ in the SC case.

Exercise 2.

- 1. The lattice of fluorite hosts a p = 3 atom basis. Therefore, the number of optical modes of fluorite is 3p 3 = 6.
- 2. In a conventional fcc unit cell there are four CaF₂ molecules, each having a mass μ/N_A , hence

$$\varrho = \frac{4\mu}{N_{\rm A}a^3} \qquad \Rightarrow \qquad a = \left(\frac{4\mu}{N_{\rm A}\varrho}\right)^{1/3} = 5.46 \times 10^{-10} \,\mathrm{m}.$$

The density of lattice sites in a fcc lattice is $n = 4/a^3$, hence the Debye wave vector of fluorite is

$$q_{\rm D} = \frac{\left(24\,\pi^2\right)^{1/3}}{a} = 1.13 \times 10^{10}\,{\rm m}^{-1}.$$

The average sound velocity within the Debye model is

$$c_{\rm D} = \left[\frac{1}{3}\left(\frac{1}{c_{\ell}^3} + \frac{2}{c_{\rm t}^3}\right)\right]^{-1/3} = 4.39 \times 10^3 \,\frac{\rm m}{\rm s}.$$

Finally, the Debye temperature of the sound modes is

$$\Theta_{\rm D} = \frac{\hbar c_{\rm D} q_{\rm D}}{\kappa_{\rm B}} = 379 \,\mathrm{K}.$$

3. Since $\Theta_D \gg T = 1 \text{ K}$, the specific heat can be calculated using the low-temperature asymptotic expression

$$c_{\rm v} = \frac{48 \,\pi^4}{5} \frac{\kappa_{\rm B}}{a^3} \left(\frac{T}{\Theta_{\rm D}}\right)^3 = 1.46 \,\,\frac{\rm J}{\rm K \cdot m^3}.$$