
Mid-term assessment test of Condensed Matter Physics - November 19th 2018

Profs. S. Caprara and A. Polimeni

Exercise 1. Consider a lattice with cubic symmetry and chemical formula AB. When measuring the X-ray di↵raction
pattern of the sample using the powder (or Debye-Scherrer) method by a radiation with � = 0.1542 nm, ten di↵raction
peaks are obtained with the scattering angle � = 2✓, as shown below.

2✓ (degrees): 36.95, 42.91, 62.30, 74.64, 78.64, 94.06, 105.75, 109.78, 127.29, and 143.77.

1. After demonstrating that the given lattice is a Bravais face-centered cubic, label each di↵raction peak using the
Miller indexing of the simple cubic lattice (h, k, l). Then, compute the lattice parameter a of the conventional cubic
cell as the mean of the 10 values deduced by each peak.

2. Indicate which of the above peaks would disappear if the A and B atoms were the same and: a) atom B were
displaced by a( 14 ,

1
4 ,

1
4 ) with respect to A; b) atom B were displaced by a( 12 ,

1
2 ,

1
2 ) with respect to A.
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Fig. 1.

Exercise 2. Consider a linear chain representing a Bravais lattice composed of N units cells of size a, with a two-atom
basis. All atoms are constrained to move only along the chain. The two inequivalent atoms, A and B, have masses
mA = 2m and mB = m, respectively. B atoms are connected to nearest-neighbors A atoms by inequivalent springs,
whose elastic constant are K1 = 2K and K2 = K, respectively (see Fig. 1). Indicate with u

A
n

and u

B
n

the displacement
of A and B atoms in the n-th unit cell, with respect to their equilibrium positions. Adopt Born-von Karman periodic
boundary conditions. To assign numerical values, consider m = 92⇥ 10�27 kg, a = 0.5 nm, K = 4.5 kg/s2.

1. Assuming traveling-wave solutions uA
n

= Aei(qna�!t) and u

B
n

= Bei(qna�!t), where q is the wave vector, determine
the dispersion of the acoustic and optical phonon branches, !

a

(q) and !

o

(q).

2. Verify that, for small q, !
a

(q) ⇡ c

s

|q|, and determine the numerical value of the velocity of sound c

s

.

3. Adopting a Debye model for the acoustic branch, !
a

(q) = c

s

|q|, and an Einstein model for the optical branch, with
!

E

= !

o

(q = 0), determine the low-temperature and high-temperature asymptotic expressions for the specific heat

c

V

of the lattice. Provide the value of c
V

at T = 1K. Consider that
R1
0

x

ex�1 dx = ⇡

2

6 .



Solution of the mid-term assessment test

Profs. S. Caprara and A. Polimeni

Exercise 1.

1. With the help of the Debye-Scherrer relation K = 2 sin ✓, with  = 2⇡/�, we obtain the following table

✓ (deg) sin ✓ K (nm�1) K/K1

1 18.475 0.3169 25.825 1.000
2 21.455 0.3658 29.808 1.154
3 31.150 0.5173 42.155 1.632
4 37.320 0.6063 49.407 1.954

The ratios being K2/K1 ⇡ 2/
p
3, K3/K1 ⇡ 2

p
2/
p
3, K4/K1 ⇡

p
11/3, the reciprocal lattice of the given Bravais

lattice is a BCC, hence the given Bravais lattice is FCC.
The reciprocal lattice vectors of an FCC can be written as K = 2⇡

a

(h, k, l) with h, k, l all even or all odd, a being

the size of the conventional FCC unit cell. By means of the Bragg relation d = �/(2 sin ✓) = a/

p
h

2 + k

2 + l

2, we find

✓ (deg) sin ✓ d (nm) hkl h

2 + k

2 + l

2
p
h

2 + k

2 + l

2
a (nm)

1 18.475 0.3169 0.2433 111 3 1.732 0.4214
2 21.455 0.3658 0.2108 200 4 2.000 0.4215
3 31.150 0.5173 0.1490 220 8 2.828 0.4216
4 37.320 0.6063 0.1272 311 11 3.317 0.4217
5 39.320 0.6337 0.1217 222 12 3.464 0.4215
6 47.030 0.7317 0.1054 400 16 4.000 0.4215
7 52.875 0.7973 0.0967 331 19 4.359 0.4215
8 54.890 0.8180 0.0942 420 20 4.472 0.4215
9 63.645 0.8961 0.0860 422 24 4.899 0.4215

10 71.885 0.9504 0.0811

⇢
333
511

27 5.196 0.4215

The last peak takes contribution from two di↵erent families of lattice planes. The average lattice parameter is
a = 0.4215 nm.

2. If the atoms in the basis are the same, some peaks disappear because of destructive interference upon scattering
on the lattice basis.
a) Taking the basis d1 = (0, 0, 0) and d2 = a( 14 ,

1
4 ,

1
4 ), and K = 2⇡

a

(h, k, l) with h, k, l all even or all odd, we find the
structure factor

SK =
X

`=1,2

eid`

·K = 1 + ei⇡(h+k+l)/2
,

which gives destructive interference whenever h + k + l = 2(2m + 1), with integer m = 0,±1,±2, .... Of the ten
measured peaks, those that would be missing are the 2nd (hkl = 200), 5th (hkl = 222), and 8th (hkl = 420).
b) Takig now d1 = (0, 0, 0) and d2 = a( 12 ,

1
2 ,

1
2 ), we find

SK =
X

`=1,2

eid`

·K = 1 + ei⇡(h+k+l)
,

which gives destructive interference whenever h + k + l = 2m + 1, with integer m = 0,±1,±2, .... Of the ten
measured peaks, those that would be missing are the 1st (hkl = 111), 4th (hkl = 311), 7th (hkl = 331), and 10th
(hkl = 333, 511).



Exercise 2.

1. The equations of motion are
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Substituting the traveling-wave solutions we find

8
<

:

�
2m!

2 � 3K
�
A+K

�
2 + e�iqa

�
B = 0

K

�
2 + eiqa

�
A+

�
m!

2 � 3K
�
B = 0,

which admits nontrivial solutions for A,B if and only if the determinant of the matrix associated to the system of
linear equations vanishes. Letting in the following ⌦ ⌘

p
K/m, which is the relevant frequency scale in our problem,

the equation that determines the phonon frequencies is

!

4 � 9

2
⌦

2
!

2 + 4⌦
4
sin2

qa

2
= 0,

whose solutions are

!

2
±(q) =

9

4
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r
1� 64
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sin2

qa

2

!
,

with !

a

(q) = !�(q) and !

o

(q) = !+(q) describing the acoustic and optical phonon branch, respectively.

2. For the acoustic branch, since for |q|a ⌧ 1 we have sin2 qa

2 ⇡
�
qa

2

�2
and

q
1� 16

81 (qa)
2 ⇡ 1� 8

81 (qa)
2, we find

!

a

(q) ⇡ c

s

|q|, with c

s

=

p
2

3
⌦a.

Inserting the values given in the text, c
s

= 1648.5m/s.

3. We set !
E

⇡ !

o

(q = 0) = 3p
2
⌦. Then, the internal energy per unit volume is

u =
X

s=a,o

Z
⇡/a

�⇡/a

dq

2⇡

~!
s

(q)

e�~!s

(q) � 1
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Z

q

D
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~c
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q

e�~csq � 1
+

1

a

~!
E

e�~!E � 1
,

with � = 1/(k
B

T ), and q

D

= ⇡/a, because in one dimension the Debye sphere coincides with the first Brillouin zone.
At high temperature, k

B

T � ~!
D

, ~!
E

, with !

D

⌘ c

s

q

D

, the exponentials in the denominators can be expanded
to first order, the two phonon modes give the same contribution (equipartition), and

u ⇡ 2k
B

T

a

) c

V

=
2k

B

a

⌘ c

DP

V

,

i.e., we recover the Dulong-Petit (DP) value for a one-dimensional crystal with two atoms per unit cell. For the given
set of parameters c

V

⇡ 5.523⇥ 10�14 J/(K·m).
At low temperature, k

B
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D
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E

,
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s
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where we adopted the change of variable x = �~c
s

q in the integral over q, and extended the integration limit to
infinity, to extract the leading behavior at small T . In the final expression for u, we neglected the exponentially small
contribution of the optical branch, since the numerical estimate gives ⇥

E

⌘ ~!
E

/k

B

= 113.32K, i.e., at T = 1K,
e��~!

E ⇡ e�113 ⇡ 8.4⇥ 10�50. Thus, at T = 1K, c
V

⇡ 0.04159 k
B

/a ⇡ 0.02079 cDP

V

= 1.148⇥ 10�15 J/(K·m), where
we used the numerical value of the Debye temperature ⇥

D

⌘ ~!
D

/k

B

= 79.115K.


