Mid-term assessment test of Condensed Matter Physics - November 19th 2018 Profs. S. Caprara and A. Polimeni

Exercise 1. Consider a lattice with cubic symmetry and chemical formula AB. When measuring the X-ray diffraction pattern of the sample using the powder (or Debye-Scherrer) method by a radiation with $\lambda = 0.1542$ nm, ten diffraction peaks are obtained with the scattering angle $\phi = 2\theta$, as shown below.

2✓ (degrees): 36.95, 42.91, 62.30, 74.64, 78.64, 94.06, 105.75, 109.78, 127.29, and 143.77.

1. After demonstrating that the given lattice is a Bravais face-centered cubic, label each diffraction peak using the Miller indexing of the simple cubic lattice (*h, k, l*). Then, compute the lattice parameter *a* of the conventional cubic cell as the mean of the 10 values deduced by each peak.

2. Indicate which of the above peaks would disappear if the A and B atoms were the same and: a) atom B were displaced by $a(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ with respect to A; b) atom B were displaced by $a(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ with respect to A.

Fig. 1.

Exercise 2. Consider a linear chain representing a Bravais lattice composed of *N* units cells of size *a*, with a two-atom basis. All atoms are constrained to move only along the chain. The two inequivalent atoms, A and B, have masses $m_A = 2m$ and $m_B = m$, respectively. B atoms are connected to nearest-neighbors A atoms by inequivalent springs, whose elastic constant are $K_1 = 2K$ and $K_2 = K$, respectively (see Fig. 1). Indicate with u_n^{A} and u_n^{B} the displacement of A and B atoms in the *n*-th unit cell, with respect to their equilibrium positions. Adopt Born-von Karman periodic boundary conditions. To assign numerical values, consider $m = 92 \times 10^{-27}$ kg, $a = 0.5$ nm, $K = 4.5$ kg/s².

1. Assuming traveling-wave solutions $u_n^{\text{A}} = A e^{i(qna - \omega t)}$ and $u_n^{\text{B}} = B e^{i(qna - \omega t)}$, where *q* is the wave vector, determine the dispersion of the acoustic and optical phonon branches, $\omega_a(q)$ and $\omega_o(q)$.

2. Verify that, for small $q, \omega_a(q) \approx c_s |q|$, and determine the numerical value of the velocity of sound c_s .

3. Adopting a Debye model for the acoustic branch, $\omega_a(q) = c_s |q|$, and an Einstein model for the optical branch, with $\omega_E = \omega_o(q=0)$, determine the low-temperature and high-temperature asymptotic expressions for the specific heat *c_V* of the lattice. Provide the value of c_V at $T = 1$ K. Consider that $\int_0^\infty \frac{x}{e^x - 1} dx = \frac{\pi^2}{6}$.

Exercise 1.

1. With the help of the Debye-Scherrer relation $K = 2\kappa \sin \theta$, with $\kappa = 2\pi/\lambda$, we obtain the following table

The ratios being $K_2/K_1 \approx 2/\sqrt{3}$, $K_3/K_1 \approx 2\sqrt{2}/\sqrt{3}$, $K_4/K_1 \approx \sqrt{11/3}$, the reciprocal lattice of the given Bravais lattice is a BCC, hence the given Bravais lattice is FCC.

The reciprocal lattice vectors of an FCC can be written as $\mathbf{K} = \frac{2\pi}{a}(h, k, l)$ with h, k, l all even or all odd, *a* being the size of the conventional FCC unit cell. By means of the Bragg relation $d = \lambda/(2 \sin \theta) = a/\sqrt{h^2 + k^2 + l^2}$, we find

The last peak takes contribution from two different families of lattice planes. The average lattice parameter is $a = 0.4215$ nm.

2. If the atoms in the basis are the same, some peaks disappear because of destructive interference upon scattering on the lattice basis.

a) Taking the basis $\mathbf{d}_1 = (0, 0, 0)$ and $\mathbf{d}_2 = a(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, and $\mathbf{K} = \frac{2\pi}{a}(h, k, l)$ with h, k, l all even or all odd, we find the structure factor

$$
S_{\mathbf{K}} = \sum_{\ell=1,2} e^{i\mathbf{d}_{\ell} \cdot \mathbf{K}} = 1 + e^{i\pi(h+k+l)/2},
$$

which gives destructive interference whenever $h + k + l = 2(2m + 1)$, with integer $m = 0, \pm 1, \pm 2, \dots$ Of the ten measured peaks, those that would be missing are the 2nd $(hkl = 200)$, 5th $(hkl = 222)$, and 8th $(hkl = 420)$. b) Takig now $\mathbf{d}_1 = (0, 0, 0)$ and $\mathbf{d}_2 = a(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, we find

$$
S_{\mathbf{K}} = \sum_{\ell=1,2} e^{i\mathbf{d}_{\ell} \cdot \mathbf{K}} = 1 + e^{i\pi(h+k+l)},
$$

which gives destructive interference whenever $h + k + l = 2m + 1$, with integer $m = 0, \pm 1, \pm 2, \dots$ Of the ten measured peaks, those that would be missing are the 1st (*hkl* = 111), 4th (*hkl* = 311), 7th (*hkl* = 331), and 10th $(hkl = 333, 511).$

Exercise 2.

1. The equations of motion are

$$
\begin{cases}\n m_A \ddot{u}_n^A = -K_1 \left(u_n^A - u_n^B \right) - K_2 \left(u_n^A - u_{n-1}^B \right) \\
m_B \ddot{u}_n^B = -K_1 \left(u_n^B - u_n^A \right) - K_2 \left(u_n^B - u_{n+1}^A \right)\n\end{cases}\n\Rightarrow\n\begin{cases}\n 2m\ddot{u}_n^A = -2K \left(u_n^A - u_n^B \right) - K \left(u_n^A - u_{n-1}^B \right) \\
m\ddot{u}_n^B = -2K \left(u_n^B - u_n^A \right) - K \left(u_n^B - u_{n+1}^A \right).\n\end{cases}
$$

Substituting the traveling-wave solutions we find

$$
\begin{cases} (2m\omega^2 - 3K) A + K (2 + e^{-iqa}) B = 0 \\ K (2 + e^{iqa}) A + (m\omega^2 - 3K) B = 0, \end{cases}
$$

which admits nontrivial solutions for A, B if and only if the determinant of the matrix associated to the system of linear equations vanishes. Letting in the following $\overline{\Omega} \equiv \sqrt{K/m}$, which is the relevant frequency scale in our problem, the equation that determines the phonon frequencies is

$$
\omega^4 - \frac{9}{2}\overline{\Omega}^2 \omega^2 + 4\overline{\Omega}^4 \sin^2 \frac{qa}{2} = 0,
$$

whose solutions are

$$
\omega_{\pm}^{2}(q) = \frac{9}{4}\overline{\Omega}^{2}\left(1 \pm \sqrt{1 - \frac{64}{81}\sin^{2}\frac{qa}{2}}\right),\,
$$

with $\omega_a(q) = \omega_a(q)$ and $\omega_o(q) = \omega_+(q)$ describing the acoustic and optical phonon branch, respectively.

2. For the acoustic branch, since for $|q|a \ll 1$ we have $\sin^2 \frac{qa}{2} \approx \left(\frac{qa}{2}\right)^2$ and $\sqrt{1-\frac{16}{81}(qa)^2} \approx 1-\frac{8}{81}(qa)^2$, we find

$$
\omega_a(q) \approx c_s |q|,
$$
 with $c_s = \frac{\sqrt{2}}{3} \overline{\Omega} a.$

Inserting the values given in the text, $c_s = 1648.5 \,\mathrm{m/s}$.

3. We set $\omega_E \approx \omega_o(q=0) = \frac{3}{\sqrt{2}}\overline{\Omega}$. Then, the internal energy per unit volume is

$$
u = \sum_{s=a,o} \int_{-\pi/a}^{\pi/a} \frac{dq}{2\pi} \frac{\hbar \omega_s(q)}{e^{\beta \hbar \omega_s(q)} - 1} \approx \int_0^{q_D} \frac{dq}{\pi} \frac{\hbar c_s q}{e^{\beta \hbar c_s q} - 1} + \frac{1}{a} \frac{\hbar \omega_E}{e^{\beta \hbar \omega_E} - 1},
$$

with $\beta = 1/(k_B T)$, and $q_D = \pi/a$, because in one dimension the Debye sphere coincides with the first Brillouin zone. At high temperature, $k_B T \gg \hbar \omega_D$, $\hbar \omega_E$, with $\omega_D \equiv c_s q_D$, the exponentials in the denominators can be expanded

to first order, the two phonon modes give the same contribution (equipartition), and

$$
u \approx \frac{2k_B T}{a} \Rightarrow c_V = \frac{2k_B}{a} \equiv c_V^{DP},
$$

i.e., we recover the Dulong-Petit (DP) value for a one-dimensional crystal with two atoms per unit cell. For the given set of parameters $c_V \approx 5.523 \times 10^{-14} \text{ J/(K}\cdot\text{m})$.

At low temperature, $k_B T \ll \hbar \omega_D$, $\hbar \omega_E$,

$$
u \approx \frac{\hbar c_s}{\pi} \left(\frac{k_B T}{\hbar c_s}\right)^2 \int_0^\infty \frac{x}{e^x - 1} dx + \frac{\hbar \omega_E}{a} e^{-\beta \hbar \omega_E} \approx \frac{\pi^2 \hbar \omega_D}{6a} \left(\frac{k_B T}{\hbar \omega_D}\right)^2 \quad \Rightarrow \quad c_V = \frac{\pi^2 k_B}{3a} \left(\frac{k_B T}{\hbar \omega_D}\right),
$$

where we adopted the change of variable $x = \beta \hbar c_s q$ in the integral over q, and extended the integration limit to infinity, to extract the leading behavior at small *T*. In the final expression for *u*, we neglected the exponentially small contribution of the optical branch, since the numerical estimate gives $\Theta_E \equiv \hbar \omega_E / k_B = 113.32 \text{ K}$, i.e., at $T = 1 \text{ K}$, $e^{-\beta \hbar \omega_E} \approx e^{-113} \approx 8.4 \times 10^{-50}$. Thus, at $T = 1$ K, $c_V \approx 0.04159 k_B/a \approx 0.02079 c_V^{DP} = 1.148 \times 10^{-15} \text{ J/(K}\cdot\text{m)}$, where we used the numerical value of the Debye temperature $\Theta_D \equiv \hbar \omega_D / k_B = 79.115 \text{ K}.$