
Mid term test of Condensed Matter Physics - November 25th 2022
Profs. S. Caprara and A. Polimeni

Exercise 1: Bravais lattices and X-ray scattering.

Consider a monoatomic compound A that forms orthorhombic crystals. The sides of the primitive cell are a = 0.2 nm,
b = 2a = 0.4 nm, and c = 3a = 0.6 nm. The vectors a1 = a x̂, a2 = b ŷ = 2a ŷ, and a3 = c ẑ = 3a ẑ are adopted as
primitive vectors, x̂, ŷ, and ẑ being the unit vectors of the corresponding axes.

1. [4 points] Determine the expressions of the primitive vectors of the reciprocal lattice b1, b2, b3, and of a generic
reciprocal lattice vector K = h b1 + k b2 + ` b3.

2. [7 points] Determine the numerical values of scattering angles ϕ = 2ϑ (in degrees, ◦) of the first six peaks (in
ascending order) that are observed if the structure of the given crystal is investigated by means of the Debye-Scherrer
technique, with a radiation of wavelength λ = a

2 = 0.1 nm. Associate each peak to the indices (hk`) identifying the
families of lattice planes that produce it.

3. [4 points] Suppose now that a homonuclear molecule A2 forms crystals with the same structure as A, with the two
atoms located at the basis points d1 = 0 (the null vector) and d2 = 1

2 (a x̂ + b ŷ + c ẑ) = a
2 (x̂ + 2ŷ + 3ẑ), respectively.

Determine which of the six peaks found above would now be missing due to the destructive interference of the X rays
scattered by the two identical atoms. Explain why the sixth peak is weakened but does not disappear.

Consider a monoatomic cubic lattice, whose 
phonon dispersion curves along the G-M direction 
in the low-q limit are displayed in the figure on the 
right. Assuming that the linear dispersion 
relationship is valid at all qs (Debye approximation): 
a) evaluate the Debye frequency wD knowing that 
the density of states at that frequency g(wD) is equal 
to 1.20x1015 (rad/s)-1m-3 (take for the sound velocity 
the properly averaged value); b) evaluate the 
atomic density; c) evaluate the specific heat at T=1 
K and T=500 K; d) if the lattice had a three-atom 
basis how the values of the specific heat at the two 
temperatures considered above would have been changed (explain why)? 

 

 

 

a) From the plot it can be found that the sound velocities for each phonon branch are v1=2000 m/s, v2=3000 
m/s and v3=4000 m/s. This results in an average sound velocity given by 
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( =2565.52 m/s. 

Since the density of states in the Debye approximation is .(0) = 2,

34,567(
 placing w=wD we get 08 =

√2;3 < " ><=2.0x1013 rad/s. 

b) The atomic density can be equivalently found as = = ∫ 2,

34,567(
2?
@ = 2?

(

A4,567(
=8.0x1027 m-3 or using = =

B8</(6;3) with B8 =
2?
567

. 

c) At T=1 K (low temperature limit) we have EF = 234 I J
K?
L
<
=	NO =7.22 J/(K×m3), where P8 =

ℏ2?
RS

=153 K. 

At T=500 K (much higher than P8), EF = 3	=	NO =	3.31x105 J/(K×m3).  

d) In the case of a three-atom basis, the T=1 K specific heat is the same, since no optical phonon would be 
most likely excited. For T=500 K, instead, EF = 9	=	NO =9.94x x105 J/(K×m3). 
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Fig. 1.

Exercise 2: Phonons and specific heat.

Consider a monoatomic cubic lattice, whose phonon dispersion curves along the Γ−M [(0,0,0)−(πa ,
π
a ,0)] direction of

the first Brillouin zone are displayed in Fig. 1 (notice that this is a detail in the low-q limit, the horizontal axis does
not reach the boundary of the Brillouin zone). Assume that the linear dispersion relationships are valid at all wave
vectors q, with sound velocities independent of the direction (Debye approximation).

1. [5 points] Evaluate the Debye frequency ωD, knowing that the density of states at that frequency is g(ω = ωD) =
1.20× 1015 (rad/s)−1m−3 (take for the sound velocity the properly averaged value v).

2. [2 points] Evaluate the atomic density n.

3. [5 points] Evaluate the specific heat cV at the temperatures T = 1 K and T = 500 K.

4. [3 points] If the lattice had a three-atom basis how the values of the specific heat at the two temperatures considered
above would have been changed? Motivate your answer, under the assumption that the characteristic frequencies of
the optical modes are of the same order of magnitude as ωD.

[Useful constants: the Planck constant is ~ = 1.05×10−34 J·s/rad, the Boltzmann constant is κB = 1.38×10−23 J·K−1].



Solution
Profs. S. Caprara and A. Polimeni

Exercise 1.

1. One has

b1 =
2π (a2 × a3)

a1 · (a2 × a3)
=

2π

a
x̂, b2 =

2π (a3 × a1)

a1 · (a2 × a3)
=

2π

b
ŷ =

π

a
ŷ, b3 =

2π (a1 × a2)

a1 · (a2 × a3)
=

2π

c
ẑ =

2π

3a
ẑ,

hence K = h b1 + k b2 + ` b3 = π
3a (6h x̂ + 3k ŷ + 2` ẑ).

2. The magnitude of a generic reciprocal lattice vector is K = |K| = π
3a

√
36h2 + 9 k2 + 4 `2, hence, from the Debye-

Scherrer formula

sin
ϕ

2
=
λK

4π
⇒ ϕ = 2 arcsin

λK

4π
,

with

λK

4π
=

1

24

√
36h2 + 9 k2 + 4 `2.

The first six peaks are: ϕ1 = 2 arcsin 1
12 = 9.56◦, corresponding to the family of lattice planes (001); ϕ2 = 2 arcsin 1

8 =

14.36◦, corresponding to the family of lattice planes (010); ϕ3 = 2 arcsin
√
13
24 = 17.28◦, corresponding to the family of

lattice planes (011); ϕ4 = 2 arcsin 1
6 = 19.19◦, corresponding to the family of lattice planes (002); ϕ5 = 2 arcsin 5

24 =

24.05◦, corresponding to the family of lattice planes (012); ϕ6 = 2 arcsin 1
4 = 28.96◦, corresponding to the families of

lattice planes (100), (020), and (003).

3. The structure factor, if the two atoms occupying the basis points are identical, is

SK =
∑
j=1,2

eiK·dj = 1 + eiπ(h+k+`).

Therefore, the peaks that are suppressed by the destructive interference from the basis are those such that h+ k + `
is an odd number. This is the case for ϕ1, ϕ2, and ϕ5. Instead, the peak observed at the angle ϕ6 is only attenuated,
because the contribution from the family of lattice planes (020) survives. This is possible because the three families
of lattice planes (100), (020), and (003) are not connected by the symmetries of the orthorhombic lattice. The fact
that they contribute to the same peak is a consequence of the very peculiar structure of the given lattice, with b = 2a
and c = 3a, and one can be easily convinced that the three families would give rise to three different peaks if b 6= 2a
and c 6= 3a.



Exercise 2.

NOTICE that in this exercise the density of states was meant to be that of an individual acoustic branch. However,
since this statement was inadvertently omitted, solutions in which the density of states is assumed to be the cumulative
one (i.e., the one summed over the three acoustic branches) will also be considered as correct. The two solutions are
discussed hereafter.

1. From the plot it can be found that the sound velocities for each phonon branch are v1 = 2000 m/s, v2 = 3000 m/s,
and v3 = 4000 m/s. This results in an average sound velocity given by

v =
1

3

√
1
3

(
1
v31

+ 1
v32

+ 1
v33

) = 2565.52 m/s.

Since the density of states of an individual acoustic branch, in the Debye approximation, is

g(ω) =
ω2

2π2v3
,

putting ω = ωD, we find

ωD =
√

2π2v3g(ωD) = 2.0× 1013 rad/s.

2. The atomic density can be equivalently found as

n =

∫ ωD

0

ω2

2π2v3
dω =

ω3
D

6π2v3
= 8.0× 1027 m−3,

or using n = q3D/(6π
2), with qD = ωD/v.

3. Since the Debye temperature is ΘD = ~ωD/κB = 153 K, at T = 1 K the system is in the low-temperature limit and

cV = 234

(
T

ΘD

)3

nκB = 7.22 J/(K ·m3).

At T = 500 K (much higher than ΘD), cV = 3nκB = 3.31× 105 J/(K·m3).

4. In the case of a three-atom basis, the specific heat at T = 1 K is the same, since no optical phonon would be
most likely excited. For T = 500 K, instead, the system is likely in the high-temperature (Dulong-Petit) regime and
cV = 9nκB = 9.94× 105 J/(K·m3).

ALTERNATIVE SOLUTION:

1a. From the plot it can be found that the sound velocities for each phonon branch are v1 = 2000 m/s, v2 = 3000 m/s,
and v3 = 4000 m/s. This results in an average sound velocity given by

v =
1

3

√
1
3

(
1
v31

+ 1
v32

+ 1
v33

) = 2565.52 m/s.

Since the cumulative density of states in the Debye approximation is

g(ω) =
3ω2

2π2v3
,

putting ω = ωD, we find

ωD =

√
2π2v3g(ωD)

3
= 1.15× 1013 rad/s.



2a. The atomic density can be equivalently found as

n =
1

3

∫ ωD

0

3ω2

2π2v3
dω =

ω3
D

6π2v3
= 1.54× 1027 m−3,

or using n = q3D/(6π
2), with qD = ωD/v.

3a. Since the Debye temperature is ΘD = ~ωD/κB = 88.3 K, at T = 1 K the system is in the low-temperature limit
and

cV = 234

(
T

ΘD

)3

nκB = 7.22 J/(K ·m3).

At T = 500 K (much higher than ΘD), cV = 3nκB = 6.37× 104 J/(K·m3).

4a. In the case of a three-atom basis, the specific heat at T = 1 K is the same, since no optical phonon would be
most likely excited. For T = 500 K, instead, the system is likely in the high-temperature (Dulong-Petit) regime and
cV = 9nκB = 1.91× 105 J/(K·m3).


