Written test of Condensed Matter Physics - July 17th 2019

Profs. S. Caprara and A. Polimeni

7=1.055x103* J-s, ks=1.381x10% J/K.

Exercise 1. Potassium is a metal with the body-centered cubic (BCC) lattice structure with one atom basis.
By performing a diffraction measurement using an x-ray beam with A=0.116 nm, the first Bragg reflection
compatible with the BCC structure is observed at the angle 6=8.85°. Evaluate:

a) the lattice parameter of the conventional cubic cell of potassium;

b) the Fermi energy (assuming a free-electron parabolic dispersion with the electron mass equal to that in
vacuum).

Exercise 2. Consider a two-dimensional monoatomic crystal with square unit cell and lattice parameter
equal to a=0.5 nm. Assume that the phonon dispersion can be accounted for by the Debye model, whereby
all vibrational branches are replaced by the same linear dispersion relation w = v - |k|, where v= 8000 m/s
is the sound velocity. Determine:

a) the Debye temperature;

b) the expression and value of the specific heat at 5 K and at 5000 K.
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Exercise 1. Potassium is a metal with the body-centered cubic (BCC) lattice structure with one atom basis.
By performing a diffraction measurement using an x-ray beam with A=0.116 nm, the first Bragg reflection
compatible with the BCC structure is observed at the angle 6=8.85°. Evaluate:

a) the lattice parameter of the conventional cubic cell of potassium;

b) the Fermi energy (assume the electron mass of electrons equal to that in vacuum).

a) 2dsinf = A, and for a BCC the first selection rule-compatible peak is for (hkl)=(110).

Thus, @ = d(12 + 12 + 02)1/2 = —2_\/7 = 0.533 nm.
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b) Er = zh_m (3m2?n)?/3, where n=2/(0.533 nm)?=1.32x10% m™. We obtain E¢=2.03 eV.

Exercise 2. Consider a two-dimensional monoatomic crystal with square unit cell and lattice parameter
equal to a=0.5 nm. Assume that the phonon dispersion can be accounted for by the Debye model, whereby
all vibrational branches are replaced by the same linear dispersion relation w = v - |k|, where v= 8000 m/s
is the sound velocity. Determine:

a) the Debye temperature;

b) the expression and value of the specific heat at 5 K and at 5000 K.

a) Like in three dimension, we replace the integral over the | Brillouin zone by an integral over a circle of
radius kp chosen to contain precisely the N allowed wave vectors, where N is the number of ions in the
crystal. Since the area of k-space per allowed wave vector is (21)? /S where $=a?, this requires (2m)2N /S

to equal wkp .

Therefore
2 2
kg = @ Gm)” . Being kp = h , one finds O = zkv_h\/_" =433 K.
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The 5 K and 5000 K represent the limits for which the following holds, respectively: T « 8p(x « 1) and
T > Op(x » 1).

-T K Op(x < 1).
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¢, = ERTEL T2 = 222 (99) =212-1077 J/(K- m?).
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