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1 The density of states. In the following, we indicate with εs,k the eigenvalues of the Bloch Hamiltonian for
one-electron states in a given crystal. The wavevector k is marked explicitly, while the set of quantum numbers s
indicates all other quantum numbers, including. e.g., the spin projection, whenever this is a good quantum number.

The density of states (per unit volume) in D spatial dimensions is then defined as

g(ε) ≡
∑
s

∫
FBZ

dDk

(2π)D
δ(ε− εs,k) ≡

∑
s

gs(ε),

where

gs(ε) ≡
∫
FBZ

dD k

(2π)D
δ(ε− εs,k)

is the density of states of the band labeled by the set of quantum numbers s, and the integrals are extended over
the First Brillouin Zone (FBZ) of the given crystal. Degeneracies, whenever present, are taken into account by the
explicit summation over s.

2 Thermodynamical properties of metals. A metal is a crystal in which the highest occupied level at zero
temperature, εF (Fermi level), falls within a set of partially filled bands, so that g(εF ) > 0. The thermodynamical
properties of Bloch electrons in metals are usually described by quantities that can be written as

w =

∫ +∞

−∞
Hw(ε) f(ε− µ) dε,

where µ is the chemical potential, the function Hw(ε) characterizes the corresponding thermodynamic quantity, and
is assumed to be identically zero below a certain minimum energy εmin, hereafter taken as the zero on the energy axis,
and to grow at most as a power of ε as ε→ +∞, and

f(z) =
1

eβz + 1

is the Fermi distribution function, with β = (κB T )−1.
In the following, we shall calculate the electron density n, for which Hn(ε) = g(ε), and the internal energy per unit

volume u, for which Hu(ε) = ε g(ε). In both cases, since g(ε) ≡ 0 for ε < 0, the desired property of a vanishing Hw(ε)
for ε < 0 is guranteed.

The crucial observation is that at low temperature the derivative of the Fermi function

−df

dε
(ε− µ) = β

eβ(ε−µ)

[eβ(ε−µ) + 1]2

is narrowly peaked at ε = µ and behaves as a Dirac δ function, since∫ +∞

−∞

[
−df

dε
(ε− µ)

]
dε = 1.

Moreover, since it is readily shown that

−df

dε
(ε− µ) = βf(ε− µ)[1− f(ε− µ)] = βf(ε− µ)f(µ− ε),

the derivative of the Fermi function is an even function of its argument ε− µ.

3 The Sommerfeld expansion. Let us define

Gw(ε) ≡
∫ ε

−∞
Hw(z) dz



as the primitive of Hw(ε) that vanishes at −∞. Then, upon integration by parts, taking advantage of the fact that
Gw(ε) f(ε− µ) vanishes as ε→ ±∞, we find

w =

∫ +∞

−∞
f(ε− µ) dGw(ε) =

∫ +∞

−∞
Gw(ε)

[
−df

dε
(ε− µ)

]
dε.

Now, taking into account that at low temperatures the quantity in square brackets is narrowly peaked at ε = µ, it
seems a good idea to expand Gw(ε) in power series around ε = µ,

Gw(ε) =

∞∑
`=0

1

` !
G(`)
w (µ) (ε− µ)`,

where G
(`)
w (µ) is the `-th derivative of Gw calculated at ε = µ, so that

w =

∞∑
`=0

1

` !
G(`)
w (µ)

∫ +∞

−∞
(ε− µ)`

[
−df

dε
(ε− µ)

]
dε.

Since we have remarked that the quantity in square brackets is an even function of it argument, the odd powers
disappear and

w =

∞∑
k=0

1

(2k) !
G(2k)
w (µ)

∫ +∞

−∞
(ε− µ)2k

[
−df

dε
(ε− µ)

]
dε.

Now, the integrals

1

(2k) !

∫ +∞

−∞
(ε− µ)2k

[
−df

dε
(ε− µ)

]
dε =

β

(2k) !

∫ +∞

−∞
(ε− µ)2k

eβ(ε−µ)

[eβ(ε−µ) + 1]2
dε,

under the change of variable z = β(ε− µ), can be cast in the form

β−2k

(2k) !

∫ +∞

−∞
z2k

ez

(ez + 1)2
dz ≡ ak(κB T )2k

with

ak ≡
1

(2k) !

∫ +∞

−∞
z2k

ez

[ez + 1]2
dz.

Gathering all the results, we find

w =

∞∑
k=0

akG
(2k)
w (µ) (κB T )2k

(Sommerfeld expansion), that casts the thermodynamic quantity w in the form of a low-temperature expansion. As
we shall argue in the following, when written in terms of dimensionless quantities, the Sommerfeld expansion is an
expansion in even powers of κB T/εF . Usually, in metals, the Fermi energy is of the order of 1 eV, that corresponds
to a temperature of 1.1× 104 K. Therefore, even at room temperature, T = 300 K, electrons in metals are in a highly
degenerate (low-temperature) quantum state, and only the first terms in the expansion need to be taken into account.

For all further developments, one has to consider that a0 = 1, a1 = π2

6 , a2 = 7π4

360 , ..., and G
(0)
w (µ) = Gw(µ) =∫ µ

−∞Hw(ε) dε, G
(2k)
w (µ) = H

(2k−1)
w (µ) for k ≥ 1, so that

w =

∫ µ

−∞
Hw(ε) dε+

∞∑
k=1

akH
(2k−1)
w (µ) (κB T )2k.

4 Electron density. To calculate the electron density n, we have to consider that Hn(ε) = g(ε). Stopping the
Sommerfeld expansion at the term k = 1 yields

n ≈
∫ µ

−∞
g(ε) dε+

a1
2
g′(µ) (κB T )2.



In this expression, the temperature dependence is not made fully explicit, since the chemical potential µ depends
on the temperature. To make all the temperature dependence explicit, we proceed as follows. At T = 0, we have
µ(T = 0) = εF , so we expect small corrections at finite temperatures, and we assume that these corrections are
quadratic, µ ≈ εF + α(κB T )2, checking our assumption a posteriori, when determining the value of the unknown
coefficient α. Since the second term in the expression for n is already of order (κB T )2, we can take g′(µ) = g′(εF ),
making an error which is of higher order. Furthermore, for small µ− εF ,∫ µ

−∞
g(ε) dε =

∫ εF

−∞
g(ε) dε+

∫ µ

εF

g(ε) dε ≈
∫ εF

−∞
g(ε) dε+ g(εF ) (µ− εF ).

The first term is nothing but the electron density n calculated at T = 0, and the second term reads g(εF )α(κB T )2.
Since n does not depend on the temperature, we find

n ≈ n+

[
α g(εF ) +

π2

6
g′(εF )

]
(κB T )2.

Thus, we deduce that the term in square brackets must vanish, up to order (κB T )2, whence

α ≈ −π
2

6

g′(εF )

g(εF )
,

and

µ ≈ εF
[
1− π2

6

g′(εF )

εF g(εF )
(κB T )2

]
.

The correction to the chemical potential has a sign opposite to the sign of g′(εF ). This is quite obvious, since the
Fermi function is symmetric around the point ε = µ, where it equals 1

2 at all T > 0. Therefore, were it for the
distribution alone, the number of electrons that are lost from states below εF due to thermal excitation would be
exactly equal to the number that is gained above εF . But if g′(εF ) > 0 the states are denser above εF than below it,
so there would be a neat increase in the number of electrons. Since these cannot be created from nothing, the chemical
potential must be diminished by the right amount to compensate for this increase. A similar reasoning explains why
µ must increase if g′(εF ) < 0.

An estimate by order of magnitude gives |g′(εF )| ∼ g(εF )/εF , therefore an estimate of the relative correction to
the chemical potential is ∣∣∣∣δµµ

∣∣∣∣ ∼ (κB TεF
)2

,

which is usually a very small number even at room temperature.
To make a comparison, we notice that in the three-dimensional Fermi gas

g(ε) =
3

2

n

εF

(
ε

εF

)1/2

, g′(ε) =
3

4

n

εF

1

(εF ε)
1/2

, whence g(εF ) =
3

2

n

εF
= 2εF g

′(εF ),

i.e., g′(εF ) = g(εF )/(2εF ), which is fully consistent with the estimate of the order of magnitude given above, up tu a
factor 1

2 . Then

µ ≈ εF

[
1− π2

12

(
κB T

εF

)2
]
,

where the correction is always negative, because in the three-dimensional Fermi gas g′(εF ) > 0.

5 Internal energy. To calculate the electron internal energy per unit volume u, we have to consider that Hu(ε) =
ε g(ε). Stopping again the Sommerfeld expansion at the term k = 1 yields

u ≈
∫ µ

−∞
ε g(ε) dε+

π2

6
[µ g′(µ) + g(µ)] (κB T )2,



where again part of the temperature dependence is implicit in µ. However, since the correction to µ has been
calculated, we can now plug it in, while letting µ g′(µ) + g(µ) ≈ εF g

′(εF ) + g(εF ) in front of the explicit (κB T )2

factor. Then, for small µ− εF ,

u ≈
∫ εF

−∞
ε g(ε) dε+

∫ µ

εF

ε g(ε) dε+
π2

6
[εF g

′(εF ) + g(εF )] (κB T )2

≈ u0 + εF g(εF )α(κB T )2 +
π2

6
[εF g

′(εF ) + g(εF )] (κB T )2,

where u0 is the value at T = 0. Plugging in the expression for α obtained above, we find the final result

u ≈ u0 +
π2

6
g(εF ) (κB T )2,

where now all the temperature dependence is explicit. As an estimate by order of magnitude, g(εF ) ∼ u0/ε2F so that
again the relative correction is small,

δu

u
∼
(
κB T

εF

)2

.

In the three-dimensional Fermi gas, u0 = 3
5εF n, hence g(εF ) = 5

2
u0

ε2F
, consistent with the above estimate, up to a

factor 5
2 . Thus, for the three-dimensional Fermi gas

u ≈ u0

[
1 +

5π2

12

(
κB T

εF

)2
]
.

6 The specific heat. The specific heat of the electrons is readily calculated as

celV =
du

dT
≈ π2

3
g(εF )κ2B T,

and depends on the density of states at the Fermi energy, which is a consequence of the fact that only electrons close

to the Fermi level can be thermally excited. The coefficient γ = π2

3 g(εF )κ2B is usually introduced to write celV = γ T .

In the Fermi gas g(εF ) = 3n
2εF

, hence

celV ≈
π2

2
nκB

(
κB T

εF

)
.

The linearity of the specific heat shows that even at room temperature there is no such thing as equipartition for
electrons, rather, the estimate given by equipartition ( 3

2nκB) is suppressed by the small factor κB T
εF

.
In a metal, besides the electron contribution, the low-temperature specific heat has also a phonon contribution,

therefore

cV = celV + cphV = γ T +AT 3.

Then, plotting the measured quantities

cV
T

= γ +AT 2

as a function of T 2, the intercept gives the electron contribution and the slope gives the phonon contribution.

7 Concluding remarks. The Sommerfeld expansion is a very powerful method to calculate the thermodynamical
properties of Bloch electrons in most cases. There are, however, cases in which it is apt to fail. The criterion for
failure is that the corrections to the T = 0 properties, that are assumedly small, turn out not to be small. This is for
instance the case when εF is located near a van Hove singularity in the electron spectrum, where the density of states
diverges.


