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Notes on the tight binding method in a lattice with a basis
Prof. S. Caprara

1 Formulation of the problem. We want to adapt the linear combination of atomic orbitals to be used within
the tight binding method to the case of a lattice with a basis. In the following, ΛB indicates the number of atoms
belonging to the basis, and rν , ν = 1, ...,ΛB identifies their position within the primitive cell. We need to construct
the customary Bloch function

ψk(r) =
∑
R

eik·R φ(r −R),

where R are the vectors of the Bravais lattice and

φ(r) =

ΛB∑
ν=1

∑
n

eik·rν bn,ν φn,ν(r − rν),

φn,ν(r) being the n-th atomic orbital of the atom labelled with ν, is here a linear combination of atomic orbitals of
the various atoms belonging to the basis, with coefficients bn,ν . The factors eik·rν , for a fixed k, could be included
in the definition of the coefficients bn,ν , but the symmetry properties of the lattice can be more easily implemented if
these factors are kept explicit.

2 Deduction of the tight binding equations. To deduce the tight binding equations, we multiply the Bloch
eigenvalue equation (Ĥat + ∆U − εk)ψk(r) = 0 by e−ik·rλ φ∗`,λ(r − rλ) and integrate. We find

0 =

∫
dr e−ik·rλ φ∗`,λ(r − rλ)

(
Ĥat + ∆U − εk

)
ψk(r)

= (E`,λ − εk)

∫
dr e−ik·rλ φ∗`,λ(r − rλ)ψk(r) +

∫
dr e−ik·rλ φ∗`,λ(r − rλ) ∆U ψk(r),

where we used the fact that φ`,λ(r−rλ) is an eigenfunction of the (Hermitian) atomic Hamiltonian Ĥat, with eigenvalue
E`,λ. Let us now focus on the two integrals appearing in the last term. After substituting the expression for ψk, the
first reads

I`,λ ≡
∫

dr e−ik·rλ φ∗`,λ(r − rλ)ψk(r) =
∑
R

ΛB∑
ν=1

∑
n

eik·(R+rν−rλ) bn,ν

∫
dr φ∗`,λ(r − rλ)φn,ν(r −R− rν).

There are three kind of terms: R = 0 and rν = rλ (same cell, same atom); R = 0 and rν 6= rλ (same cell, different
atom); R 6= 0 (different cells, no need to separate same and different atoms). Then

I`,λ = b`,λ +
∑
ν 6=λ

∑
n

eik·(rν−rλ) bn,ν

∫
dr φ∗`,λ(r − rλ)φn,ν(r −R− rν)

+
∑
R 6=0

ΛB∑
ν=1

∑
n

eik·(R+rν−rλ) bn,ν

∫
dr φ∗`,λ(r − rλ)φn,ν(r −R− rν).

Since within the tight binding method one assumes that the difference E`,λ − εk is small, small terms implying the
overlap of orbitals of different atoms can be neglected when they multiply E`,λ − εk, so that one can take I`,λ ≈ b`,λ.
The term

J`,λ ≡
∫

dr e−ik·rλ φ∗`,λ(r − rλ) ∆U ψk(r)

=
∑
R

ΛB∑
ν=1

∑
n

eik·(R+rν−rλ) bn,ν

∫
dr φ∗`,λ(r − rλ) ∆U φn,ν(r −R− rν)

can be treated in an analogous manner. Here, we only need to distinguish the term R = 0, rν = rλ and n = ` (same
cell, same atom, same orbital) from all others, so that

J`,λ =

[∫
dr φ∗`,λ(r − rλ) ∆U φ`,λ(r − rλ)

]
b`,λ −

(∑
R

ΛB∑
ν=1

∑
n

)′
γ`,λ;n,ν(R + rν − rλ) eik·(R+rν−rλ) bn,ν ,
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where the prime in the sums appearing in the second term implies that the term with R = 0, rν = rλ, n = ` must be
excluded, as it was considered explicitly. The first term is a (small) change of the atomic energy E`,λ, and is usually
omitted. Hereafter

γ`,λ;n,ν(R + rν − rλ) ≡ −
∫

dr φ∗`,λ(r − rλ) ∆U φn,ν(r −R− rν)

denote the so-called transfer integrals. Then, the problem of determining the eignevalues and eignefunctions of the
Bloch Hamiltonian translates into the linear homogeneous system

(E`,λ − εk) b`,λ −

(∑
R

ΛB∑
ν=1

∑
n

)′
γ`,λ;n,ν(R + rν − rλ) eik·(R+rν−rλ) bn,ν = 0,

for λ = 1, ...,ΛB and ` = 1, 2, ... .

3 Simplified form of the tight binding equations. To further simplify the tight binding equations we assume
that for each atom in the basis there is only one set of (nearly) degenerate orbitals that participate in the formation
of the band. This set can include one s orbital; one, two, or three p orbitals; two sp orbitals; three sp2 orbitals; four
sp3 orbitals; one to five d orbitals; and so on. Then, for each ν = 1, ...,ΛB labelling an atom of the basis, there will
be a definite set of orbitals, n = 1, ..., Nν . Hence, the linear problem set by the tight binding equations is a N ×N
problem, with

N =

ΛB∑
ν=1

Nν .

FIG. 1: Example of a Bravais lattice with a three-atom basis, ΛB = 3. With respect to the tight binding method, let
us assume that the atom located at r1 contributes with N1 = 2 orbitals (the different shades of cyan); the atom
located at r2 contributes with N2 = 4 orbitals (the different shades of green); the atom located at r3 contributes
with N3 = 3 orbitals (the different shades of magenta). After choosing one primitive cell as the staring point, for

each atom (λ = 1, ...,ΛB) and for each orbital of the chosen atom (` = 1, ..., Nλ), connect the selected orbital of the
chosen atom to all possible orbitals (n = 1, ..., Nλ) of the same atom in different primitive cells (red arrows), to

define the coefficients γλ`;n(R) (R is the Bravais lattice locating the final primitive cell relative to the one adopted as

a starting point); then, connect the selected orbital of the chosen atom to all possible orbitals of all the different
atoms (ν 6= λ, n = 1, ..., Nν) in the same (R = 0, dark magenta and dark green arrows) and different (R 6= 0, light

magenta and light green arrows) primitive cells, to define the coefficients γλ;ν
`;n (R). Each connection carries a factor

eik·(R+rν−rλ). Whenever two connections are characterized by values of R + rν − rλ that are related by a symmetry
of the lattice, the corresponding γ’s should be identified, up to an overall sign that depends on the relative phase of

the overlapping orbitals that are involved in the transfer integral. Since N =
∑ΛB
ν=1Nν = 9 in the example depicted

in the figure, the related Bloch problem translates into a 9× 9 system of homogeneous equations, yielding 9
eignevalues εk,s, s = 1, ...9 (bands).

The γ’s with R = 0, rν = rλ and n 6= ` couple different nearly degenerate orbitals on the same atom (if Nν > 1).
These terms do not give rise to a band dispersion, since R+rν −rλ = 0, and only redefine the form of the orthogonal
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orbitals on a given atom once the lattice potential ∆U is taken into account. They can be neglected if we attribute
to each atomic eigenvalue E`,λ the value corresponding to this re-orthogonalisation of the atomic basis. In any case,
this effect is small, because the lattice correction ∆U is negligible inside an atom and only become sizable in the
interatomic region, where the overlap of orbitals belonging to different atoms contribute to the formation of the
bands, allowing for electrons to be transferred from one atom to the next and become a delocalized Bloch wave.

We are then left only with genuine transfer integrals, involving the same atom in different primitive cells (R 6= 0,
rν = rλ), or different atoms in the same (R = 0, rν 6= rλ) or different R 6= 0, rν 6= rλ primitive cells. In the following
we adopt the simplified notation

γλ`;n(R) ≡ γ`,λ;n,λ(R)

for transfer integrals coupling the same atom in different primitive cells, and

γλ;ν
`;n (R) ≡ γ`,λ;n,ν(R + rν − rλ)

for transfer integrals coupling different atoms (rν 6= rλ) in the same (R = 0) or different (R 6= 0) primitive cells. To
work out the general form of the band structure for a given lattice, we must face the problem of assigning values to
the γ’s that do not violate the symmetry of the lattice, to define all the coefficients of the linear problem

(E`,λ − εk) b`,λ −
∑
R 6=0

Nλ∑
n=1

γλ`;n(R) eik·R bn,λ −
∑
R

∑
ν 6=λ

Nν∑
n=1

γλ;ν
`;n (R) eik·(R+rν−rλ) bn,ν = 0,

for λ = 1, ...,ΛB , ` = 1, ..., Nλ (see FIG. 1). The sum over R is restricted to a finite number of Bravais lattice vector,
|R| ≤ Rcut, defining nearest, next-to-nearest, ..., primitive cells.

4 Examples. Some examples should clarify how to implement the procedure described so far.

a. Consider a one-dimensional lattice described by the vectors R = a î, where î is the unit vector along the x axis (see

FIG. 2). Consider the primitive cell highlighted by the box and a two-atom (ΛB = 2) basis r1 = a1 î (cyan circle) and

r2 = a2 î (magenta circle), with a1 < a2 < a. The wave-vector labelling Bloch states is k = k î Each atom contributes
to the bands with a single s orbital (N1 = N2 = 1).

Choosing the primitive cell highlighted by the box as the starting point, we connect (red arrows) the cyan atom

located at r1 to the nearest cyan atoms in the two primitive cells nearby, located at (a1 ± a) î, and call γ11 the
common value of the two transfer integrals, attaching to them the factors e±i ka. Then, we connect (blue arrows) this

atom to the two neighboring magenta atoms, located at a2 î and (a2 − a) î, and call γ12 and γ̃12 the two (generically
inequivalent) transfer integrals, attaching to them the factors ei k(a2−a1) and ei k(a2−a−a1), respectively. The two
transfer integrals become equivalent by symmetry if a2 = a1 + 1

2a, i.e., if the two magenta atoms are equidistant from
the cyan atom.

FIG. 2: One-dimensional lattice described by the vectors R = a î, where î is the unit vector along the x axis, with a

two-atom basis. The two inequivalent atoms are located at r1 = a1 î (cyan circle) and r2 = a2 î (magenta circle),
with a1 < a2 < a. Both participate in the band formation with an s orbital. The primitive cell chosen as the

starting point is highlighted by a box. The arrows define the various transfer integrals (see text).

Now let us pick the magenta atom, located at r2 in the primitive cell selected as the starting point, and connect

(brown arrows) it with the the nearest magenta atoms in the two primitive cells nearby, located at (a2 ± a) î. We
call γ22 the common value of the two transfer integrals, attaching to them the factors e±i ka. Then, we connect
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(green arrows) this atom to the two neighboring cyan atoms, located at a1 î and (a1 + a) î. By symmetry, the
corresponding transfer integrals are again γ12 and γ̃12, respectively. We must attach to them the factors e−i k(a2−a1)

and e−i k(a2−a−a1), respectively.

Let us call the atomic energies with E1 and E2. Then, in the present case, N =
∑ΛB
ν=1Nν = 2 and the tight binding

equations correspond to the 2× 2 homogeneous problem

[E1 − 2γ11 cos(ka)− εk] b1 −
(
γ12 + γ̃12 e−i ka

)
ei k(a2−a1) b2 = 0,

[E2 − 2γ22 cos(ka)− εk] b2 −
(
γ12 + γ̃12 ei ka

)
ei k(a1−a2) b1 = 0.

To determine the two bands, we must set to zero the determinant∣∣∣∣ E1 − 2γ11 cos(ka)− εk −
(
γ12 + γ̃12 e−i ka

)
ei k(a2−a1)

−
(
γ12 + γ̃12 ei ka

)
ei k(a1−a2) E2 − 2γ22 cos(ka)− εk

∣∣∣∣
finding the equation

[E1 − 2γ11 cos(ka)− εk] [E2 − 2γ22 cos(ka)− εk]−
[
γ2

12 + γ̃2
12 + 2γ12γ̃12 cos(ka)

]
= 0.

The basis vectors have disappeared from the final equation, making it evident that the related phase factors can
indeed be reabsorbed in the definition of the coefficients of the linear combination of atomic orbitals, as they do not
intervene in the final expression of the two bands

εk,± =
E1 + E2

2
− (γ11 + γ22) cos(ka)±

√[
E1 − E2

2
− (γ11 − γ22) cos(ka)

]2

+ γ2
12 + γ̃2

12 + 2γ12γ̃12 cos(ka).

The various limiting cases (γ12 = γ̃12 = 0; γ11 = γ22 = 0 and γ12 = γ̃12 6= 0) yield simpler expressions.

b. Consider a one-dimensional lattice described by the vectors R = a î, where î is the unit vector along the x axis

(see FIG. 3). Consider the primitive cell highlighted by the box and a two-atom (ΛB = 2) basis r1 = a1 î (cyan and

red lobes) and r2 = a2 î (magenta circle), with a1 < a2 < a. The wave-vector labelling Bloch states is k = k î The
first atom contributes to the bands with a single px orbital (the two shades indicating the different signs of the two
lobes of a px orbital), the second atom contributes with a single s orbital (N1 = N2 = 1).

Choosing the primitive cell highlighted by the box as the starting point, we connect (red arrows) the cyan-red

atom located at r1 to the nearest cyan-red atoms in the two primitive cells nearby, located at (a1 ± a) î and call
−γ11 the common value of the two transfer integrals, attaching to them the factors e±i ka. The minus sign in front
of the transfer integrals comes from the fact that a given (say, positive) lobe of the px orbital is closer to the lobe
with opposite sign belonging to the other atom. Then, we connect (blue arrows) this atom to the two neighboring

magenta atoms, located at a2 î and (a2− a) î, and call γ12 and −γ̃12 the two transfer integrals, attaching to them the
factors ei k(a2−a1) and ei k(a2−a−a1), respectively. The two opposite signs of the transfer integrals result from the fact
that the s orbital of the magenta atom is closer to the positive and negative lobes of the two cyan-red atoms nearby,
respectively. The two transfer integrals have the same absolute value by symmetry if a2 = a1 + 1

2a, i.e., if the two
magenta atoms are equidistant from the cyan-red atom.

Now let us pick the magenta atom, located at r2 in the primitive cell selected as a starting point, and connect (brown

arrows) it with the the nearest magenta atoms in the two primitive cells nearby, located at (a2± a) î. We call γ22 the
common value of the two transfer integrals, attaching to them the factors e±i ka. Then, we connect (green arrows)

this atom to the two neighboring cyan atoms, located at a1 î and (a1 + a) î. By symmetry, the corresponding transfer
integrals are again γ12 and −γ̃12, respectively. We must attach to them the factors e−i k(a2−a1) and e−i k(a2−a−a1),
respectively.

Let us call the atomic energies with E1 and E2. Again, N =
∑ΛB
ν=1Nν = 2 and the tight binding equations

correspond now to the 2× 2 homogeneous problem

[E1 + 2γ11 cos(ka)− εk] b1 −
(
γ12 − γ̃12 e−i ka

)
ei k(a2−a1) b2 = 0,

[E2 − 2γ22 cos(ka)− εk] b2 −
(
γ12 − γ̃12 ei ka

)
ei k(a1−a2) b1 = 0.

To determine the two bands, we must set to zero the determinant∣∣∣∣ E1 + 2γ11 cos(ka)− εk −
(
γ12 − γ̃12 e−i ka

)
ei k(a2−a1)

−
(
γ12 − γ̃12 ei ka

)
ei k(a1−a2) E2 − 2γ22 cos(ka)− εk

∣∣∣∣
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FIG. 3: One-dimensional lattice described by the vectors R = a î, where î is the unit vector along the x axis, with a

two-atom basis. The two inequivalent atoms are located at r1 = a1 î (cyan and red lobes) and r2 = a2 î (magenta
circle), with a1 < a2 < a. The first atom participates in the band formation with a px orbitals and the two colors
represent the negative (cyan) and positive (red) lobes of the px orbital, the second atom participates in the band
formation with an s orbital. The primitive cell chosen as the starting point is highlighted by a box. The arrows

define the various transfer integrals (see text).

finding the equation

[E1 + 2γ11 cos(ka)− εk] [E2 − 2γ22 cos(ka)− εk]−
[
γ2

12 + γ̃2
12 − 2γ12γ̃12 cos(ka)

]
= 0.

Again, the basis vectors have disappeared from the final equation. The final expression of the two bands is

εk,± =
E1 + E2

2
+ (γ11 − γ22) cos(ka)±

√[
E1 − E2

2
+ (γ11 + γ22) cos(ka)

]2

+ γ2
12 + γ̃2

12 − 2γ12γ̃12 cos(ka).

The various limiting cases (γ12 = γ̃12 = 0; γ11 = γ22 = 0 and γ12 = γ̃12 6= 0) yield simpler expressions.


