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1 Transport phenomena. Whenever a system is put out of equilibrium, it will host processes that tend to bring
it back to equilibrium. These processes are called transport phenomena. For instance, if different parts of the system
have different temperatures, heat will flow from the hotter to the colder parts, so as to restore a uniform temperature
across the system. The causes that produce the non-equilibrium conditions will henceforth be called forces. There
are two possibilities: if the forces are removed after producing the non-equilibrium conditions, the system will relax
back to equilibrium. Once equilibrium is regained, the transport processes will stop. If the system is permanently
forced out of equilibrium, the transport processes will continuously attempt to restore equilibrium, without stopping.
If the forces are stationary, a steady non-equilibrium states will be reached and the system will host steady transport
processes.

2 Distribution function. When characterising the non-equilibrium state of a metal, within a semiclassical picture,
one is led to consider the distribution of conduction electrons with a given quasi-momentum k. The distribution
function gn(r,k, t) is such that the number of electrons belonging to the n-th band, with quasi-momentum k in the
infinitesimal volume element dk of reciprocal space and whose position r is comprisedvwithin the infinitesimal volume
element dr, at time t, is

dNn = gn(r,k, t)
dr dk

4π3
,

where the factor of 2 accounting for spin degeneracy has been included.

3 Local equilibrium. We can define the concept of local equilibrium in the infinitesimal volume element as the
condition such that the distribution function is of the form

g0n(r,k, t) =
1

e[εn(k)−µ(r,t)]/κBT (r,t) + 1
,

i.e., it corresponds to the Fermi-Dirac distribution function for given local and instantaneous values of the chemical
potential µ and temperature T , κB being the Boltzmann constant, whereas εn(k) indicates henceforth the dispersion
of Bloch electrons belonging to the n-th band.

4 Boltzmann equation. In a system of independent particles (perfect gas), the distribution function is conserved
along the time evolution of the system (Liouville’s theorem), hence

dgn
dt

=
∂gn
∂r
· dr

dt
+
∂gn
∂k
· dk

dt
+
∂gn
∂t

= 0,

which, considering the semiclassical equations of motion for Bloch electrons

dr

dt
= vn(k), ~

dk

dt
= −e

[
E(r, t) +

1

c
vn(k)×H(r, t)

]
,

can be rewritten as

∂gn
∂r
· vn(k) +

(−e)
~

∂gn
∂k
·
[
E(r, t) +

1

c
vn(k)×H(r, t)

]
+
∂gn
∂t

= 0,

the velocity of Bloch electrons being

vn(k) =
1

~
∂εn
∂k

.

Of course, in a perfect Fermi gas, where all interactions between the electrons are neglected, no relaxation to equilib-
rium is possible for gn. To describe relaxation process, we are forced to consider collisions between the electrons (or
with other degrees of freedom). In such a case, the r.h.s. of the equation for gn will be nonzero,

∂gn
∂r
· vn(k) +

(−e)
~

∂gn
∂k
·
[
E(r, t) +

1

c
vn(k)×H(r, t)

]
+
∂gn
∂t

= Icoll[gn].

This is the Boltzmann equation, describing the evolution of a given system under arbitrary non-equilibrium conditions,
where the so-called collision integral Icoll[gn] is a non-linear functional of gn, whose expression was deduced by



Boltzmann. The resulting equation in a non-linear integro-differential equation, which is quite difficult to tackle in
general.

5 On the nature of collisions. Collisions are the mechanisms that restores equilibrium, or allows the system to
reach a steady state under stationary non equilibrium conditions. For Bloch electrons, quasi-momentum is a conserved
quantity in equilibrium, so the interaction with a perfectly periodic crystal lattice cannot produce relaxation. Collisions
arise when electrons are scattered by imperfections of the lattice (crystal defects, impurities, vacancies, substitutional
or interstitial atoms, ...), by lattice vibrations (electron-phonon interactions), or by other electrons, when the electron-
electron interaction is taken into account. The first mechanism is nearly temperature independent and dominates the
transport properties of metals at low temperatures (e.g., the residual resistivity of a metal). The other mechanisms
usually depend on the temperature as a power law ∝ Tn and are thus ineffective at low temperatures: for electron-
phonon interactions usually n = 5 at low temperature and n = 1 above the Debye temperature; for electron-electron
interactions usually n = 2.

6 Relaxation time approximation. In many circumstances, the empirical experience shows that, if a system is
weakly out of equilibrium, the relaxation is exponential, and is governed by a characteristic relaxation time, which is the
characteristic time scale of the fastest collision mechanism. In any case, the assumption of an exponential relaxation,
will usually provide a first crude description of the relaxation to equilibrium (or to a steady non-equilibrium state).
The mathematical formulation of such a relaxation time approximation is entailed in the explicit form of the collision
integral Icoll[gn] = −(gn−g0n)/τ , where τ ≡ τn(r,k) is the relaxation time. This expression guarantees that gn relaxes
exponentially to its (local) equilibrium value. In weak non-equilibrium conditions the band index n is not involved in
the relaxation process and will be omitted henceforth. Then, the Boltzmann equation reads

∂g

∂r
· v(k) +

(−e)
~

∂g

∂k
·
[
E(r, t) +

1

c
v(k)×H(r, t)

]
+
∂g

∂t
= − g − g

0

τ(r,k)
.

7 Linear response. Further insight is gained considering situations where the forces that bring the system out
of equilibrium are weak enough, so that g deviates but slightly from the equilibrium value. For instance, since the
electric and magnetic fields that bring the system out of equilibrium appear explicitly on the l.h.s. of the Boltzmann
equation, the prefactor can be calculated at equilibrium, neglecting higher order terms in the forces (linear response),

(−e)
~

∂g

∂k
≈ (−e)

~
∂g0

∂k
=

(−e)
~

∂g0

∂ε

∂ε

∂k
= (−e)∂g

0

∂ε
v(k),

where we used the fact that g0 depends on k only through ε(k), and substituted the expression for the velocity of
Bloch electrons. Analogously

∂g

∂r
≈ ∂g0

∂T

∂T

∂r
+
∂g0

∂µ

∂µ

∂r
,

where the forces that bring the system out of equilibrium can be identified as the spacial gradients of temperature
and chemical potential on the r.h.s., and the expression is explicitly linear in the forces. We can further simplify the
above expressions noting the identities

∂g0

∂T
= −∂g

0

∂ε

ε− µ
T

,
∂g0

∂µ
= −∂g

0

∂ε
,

and indicating with the symbol ∇ the derivative with respect to r, so that we can cast the Boltzmann equation in
the form (

−∂g
0

∂ε

)
v ·
[
ε− µ
T
∇T +∇µ+ eE

]
+
∂g

∂t
= −g − g

0

τ
.

This equation shows that a stationary non-equilibrium state is reached in the presence of constant temperature and
chemical potential gradients, and constant electric field, in which the deviation of g from its equilibrium value g0

is linear in the forces that keep the system out of equilibrium. Non-linear corrections will arise beyond the linear
response theory. We point out that the magnetic field disappeared from the linearized Boltzmann equation because
the term v ×H is perpendicular to v, hence v · (v ×H) = 0. This does not mean that the magnetic field disappears
altogether, because it still determines the time evolution of k through the semiclassical equations of motion for Bloch
electrons.



Notice also that, even in the simple relaxation time approximation, the Boltzmann equation is apt to describe all
thermo-electric effects that occur in metals under non-equilibrium conditions.

8 Electric current. To illustrate how the transport properties of a metal can be described within the approach
developed so far, let us consider the simple case in which temperature and chemical potential gradients are absent,
and a uniform electric field is present, which depends on time as a simple harmonic

E(t) = Eω eiωt.

Let us call δg ≡ g − g0 the deviation of the distribution from its equilibrium value. We can look for a solution of the
Boltzmann equation where δg has the same time dependence as the electric field,

δg(t) = δgω eiωt.

When T and µ are constant, g0 does not depend on time, so that

∂g

∂t
=
∂δg

∂t
= iω δg

and the Boltzmann equation reads (
iω +

1

τ

)
δg =

(
−∂g

0

∂ε

)
(−e)v ·E.

Simplifying the factor eiωt on both sides and solving for δgω, we find

δgω =
1

iω + 1
τ

(
−∂g

0

∂ε

)
(−e)v ·Eω,

confirming that the explicit solution of the Boltzmann equation is linear in the field that keeps the system out of
equilibrium.

The value of the current density j (the transport phenomenon that is induced by the electric field) is found
calculating the average value of the velocity with the non-equilibrium distribution g, times the charge of an electron,

j = (−e)
∫

v g
dk

4π3
= (−e)

∫
v (g − g0)

dk

4π3
= (−e)

∫
v δg

dk

4π3
,

where the integral is carried out over the entire first Brillouin zone and we have used the fact that the average
velocity vanishes when calculated with the equilibrium distribution g0. Then, using the explicit solution for δg, we
find j = jω eiωt with

jω =

∫ (
−∂g

0

∂ε

)
e2

iω + 1
τ

v(v ·Eω)
dk

4π3
.

To gain insight, a customary approximation, which cannot be justified on general grounds, but provides a simpler yet
reasonable description of the electric current, is to assume that the relaxation time τ depends on k only through the

energy ε(k). Since the quantity
(
−∂g

0

∂ε

)
forces the integrand to be evaluated at the Fermi surface, τ(k) = τ(ε(k))

becomes a constant τ(εF ), henceforth simply indicated with τ . Then, the factor containig τ can be taken out of the
integral and

jω =
e2

iω + 1
τ

∫ (
−∂g

0

∂ε

)
v(v ·Eω)

dk

4π3
.

9 Ohm’s law. The relation between the current density and the electric field is in agreement with Ohm’s law,
except that in a crystal the properties are anisotropic and the conductivity is a tensor rather than a scalar, i.e.,
jα =

∑
β σαβ Eβ . Thus, the current is linear in the field, but is not parallel to it, except when it lies along a direction

of high symmetry (principal axis) of the crystal. We can read the expression for the conductivity tensor off the
expression for the current density,

σαβ =
e2

iω + 1
τ

∫ (
−∂g

0

∂ε

)
vαvβ

dk

4π3
.



The tensor is evidently symmetric. The final expression is found relying on the identities∫ (
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,

where we obtained the last term integrating by part and considering that the integrand is periodic so that the
contribution evaluated at the boundaries of the first Brillouin zone vanishes. We reckognize now the expression for
the inverse mass tensor

M−1αβ =
1

~2
∂2ε

∂kα∂kβ
,

whence

σαβ =
e2

iω + 1
τ

∫
M−1αβ g

0 dk

4π3
.

10 Electrons and holes. The Fermi distribution function g0 selects the occupied states. However, the inverse
mass tensor is a periodic function, its integral over the entire first Brillouin zone vanishes, hence the integral over the
unoccupied (unocc) portion is just minus the integral over the occupied (occ) portion, and

σαβ =
e2

iω + 1
τ

∫
occ

M−1αβ
dk

4π3
= − e2

iω + 1
τ

∫
unocc

M−1αβ
dk

4π3
=
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τ

∫
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(
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) dk

4π3
.

The last term is just the conductivity of holes, which shows that the conductivity of a metal is the same, regardless
of the fact that we attribute the current to electrons or to holes.

11 Drude conductivity. For free electrons the inverse mass tensor is proportional to the identity matrix, M−1αβ =

δαβ/m, m being the free electron mass. Thus σαβ = σδαβ , where

σ =
e2

m

iω + 1
τ

∫
occ

dk

4π3
=
ne2τ

m

1

1 + iωτ
,

the integral over the occupied states yielding the conduction electron density n. This result had been obtained by
Drude within a purely classical approach, where the equation of motion of an electron in an electric field was equipped
with a friction term proportional to the electron velocity, to obtain a steady-state solution.

At ω = 0 we find the DC conductivity of a metal σ0 = ne2τ
m . The inverse of this quantity is the resistivity. The

main temperature dependence comes from the relaxation time τ , which saturates to a constant at low temperature,
where the relaxation is dominated by the scattering of electrons on the defects of the crystal lattice.

At finite frequency, considering the real (dissipative) part of the complex conductivity, we find

Reσ =
σ0

1 + ω2τ2
,

which has a maximum at ω = 0 (Drude peak) and decreases as 1/ω2 at high frequencies, ω � 1/τ . It is worth noticing
that the area under the Drude peak does not depend on τ ,∫ +∞

−∞
Reσ(ω) dω =

πne2

m
.


