Written exam of Condensed Matter Physics - November 4th 2022 Profs. S. Caprara and A. Polimeni

Exercise 1: Phonons.

Consider a one-dimensional monoatomic lattice having length $L = 40$ cm. The phonon density of states, within the Debye model, is a constant $\mathcal{D} = 8.00 \times 10^{-5}$ states/(rad/s), for $0 \leq \omega \leq \omega_D$, where ω_D is the Debye frequency.

1. [4 points] Find the velocity of sound v_s of the given lattice.

2. [3 points] Evaluate the number of atoms N in the lattice, given the Debye frequency $\omega_D = 4.00 \times 10^{12}$ rad/s.

3. [4 points] Determine the mass m of the atoms forming the lattice, knowing that the elastic constant that mimics the interaction between nearest-neighboring atoms is $\beta = 8.00 \times 10^{-3}$ N/m.

3. [4 points] Evaluate the mean energy per unit length u at a temperature $T = 500 \text{ K}$, after checking that $\hbar \omega_{\text{D}} \ll \kappa_{\text{B}}T$, so that the classical approximation holds.

Fig. 1.

Exercise 2: Tight binding.

A binary compound AB forms a two-dimensional square Bravais lattice with lattice spacing $a = 0.5$ nm (see Fig. 1). The atoms A occupy the sites of the Bravais lattice, while the atoms B are located at the positions identified by the basis vector $\mathbf{d} = (a/2, a/2)$. A primitive cell is highlighted by a thicker line in Fig. 1. The atoms A display outer p_x orbitals, while the atoms B display outer p_y orbitals. The convention for the signs of the lobes of the p orbitals is shown in Fig. 1. The energy of both p orbitals is $\varepsilon_p = 0$. Assume that the electron states of the given lattice can be described within the tight-binding approximation with attractive lattice potential $\Delta U < 0$, and consider only nearest-neighbor transfer integrals $\gamma_{u,v} \equiv \gamma (r_{u,v} \equiv u \frac{a}{2} \hat{x} + v \frac{a}{2} \hat{y})$, where $u = \pm, v = \pm$, and \hat{x}, \hat{y} are the unit vectors of the corresponding axes, so that the four vectors r_{uv} locate the positions of the nearest neighbors. The absolute value of the nearest-neighbor transfer integrals is $\gamma_0 \equiv |\gamma_{u\,v}| = 0.75 \,\text{eV}$. All other transfer integrals and all on-site (β) and overlap (α) integrals can be neglected.

1. [3 points] Assign the correct sign to the four nearest-neighbor transfer integrals, γ_{++} , γ_{+-} , γ_{-+} , and γ_{--} (see Fig. 1), motivating your answer.

2. [5 points] Determine the two electron bands formed by the orbitals taken into account, $\varepsilon_{+}(\mathbf{k})$, where $\mathbf{k} = (k_x, k_y)$ is the two-dimensional Bloch wave vector.

3. [7 points] Determine the location of the minima of the lowest band $\varepsilon_-(\mathbf{k})$ in the first Brillouin zone, then calculate the numerical values of the eigenvalues of the effective mass tensor m_{ij} , $i = x, y, j = x, y$, at these points.

[Useful constants and conversion factors: the Planck constant is $\hbar = 1.05 \times 10^{-34}$ J·s, the Boltzmann constant is $\kappa_B = 1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$, the elementary charge is $e = 1.60 \times 10^{-19} \text{ C}$, the free electron mass is $m_0 = 9.11 \times 10^{-31} \text{ kg}$; 1 eV corresponds to a temperature of 1.16×10^4 K or to an energy of 1.60×10^{-19} J.

Solution Profs. S. Caprara and A. Polimeni

Exercise 1.

1. One has

$$
\mathcal{D}(\omega) = \frac{\mathrm{d}N}{\mathrm{d}\omega} = \frac{L}{\pi} \frac{\mathrm{d}q}{\mathrm{d}\omega} = \frac{L}{\pi v_s},
$$

for $0 \leq \omega \leq \omega_D$. Hence, one finds

$$
v_s = \frac{L}{\pi \mathcal{D}} = 1.592 \times 10^3 \,\mathrm{m/s}.
$$

2. One has

$$
N = \int_0^{\omega_D} \mathcal{D} \, \mathrm{d}\omega = \mathcal{D} \, \omega_D = 3.2 \times 10^8.
$$

3. One has $v_s = a\sqrt{\beta/m}$, where $a = L/N$. Hence,

$$
m = \left(\frac{L}{N}\right)^2 \frac{\beta}{v_s^2} = 4.93 \times 10^{-27} \,\text{kg}.
$$

4. One finds $\hbar\omega_D = 4.22 \times 10^{-22} \text{ J} \ll \kappa_B T = 6.90 \times 10^{-21} \text{ J}$, hence the classical approximation can be used and

$$
u = \frac{\kappa_{\rm B} T}{a} = \frac{N \kappa_{\rm B} T}{L} = 5.52 \times 10^{-12} \text{J/m}.
$$

Exercise 2.

1. From Fig. 1 one can see that the positive lobe of the p_x orbital of an A atom is closer to the positive lobe of the p_y orbital a B atom at r_{+-} and to the negative lobe of the p_y orbital a B atom at r_{++} , whereas the negative lobe of the p_x orbital of an A atom is closer to the negative lobe of the p_y orbital a B atom at r_{-+} and to the positive lobe of the p_y orbital a B atom at r_{-} . Hence, for $\Delta U < 0$, $\gamma_{++} < 0$, $\gamma_{+-} > 0$, $\gamma_{-+} > 0$, and $\gamma_{--} < 0$.

2. Let

$$
w_{\mathbf{k}} = \sum_{u=\pm} \sum_{v=\pm} \gamma_{u,v} e^{i \mathbf{r}_{u,v} \cdot \mathbf{k}} = 2\gamma_0 \left\{ \cos \left[\frac{a(k_x - k_y)}{2} \right] - \cos \left[\frac{a(k_x + k_y)}{2} \right] \right\} = 4\gamma_0 \sin \left(\frac{k_x a}{2} \right) \sin \left(\frac{k_y a}{2} \right).
$$

Indicating with b_x and b_y the coefficients of the linear combination of p_x and p_y orbitals, respectively, within the tight-binding approximation indicated in the text, one find the text of two coupled homogeneous linear equations

$$
\begin{cases} (\varepsilon_p - \varepsilon_k) b_x - w_k b_y = 0, \\ -w_k b_x + (\varepsilon_p - \varepsilon_k) b_x = 0, \end{cases}
$$

which has nontrivial solutions if $\varepsilon_{\mathbf{k}} \equiv \varepsilon_{\pm}(\mathbf{k}) = \varepsilon_{p} \pm |w_{\mathbf{k}}|$. In the following, according to the text, we set $\varepsilon_{p} = 0$. 3. The minima of the lower band, $\varepsilon_-(\mathbf{k})$, are found where

$$
\left| \sin \left(\frac{k_x a}{2} \right) \sin \left(\frac{k_y a}{2} \right) \right|
$$

is maximum. In the first Brillouin zone $k_x \in \left[-\frac{\pi}{a}, \frac{\pi}{a}\right], k_y \in \left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$, this occurs at the four equivalent points $\mathbf{k}_{\pm\pm} = (\pm \frac{\pi}{a}, \pm \frac{\pi}{a})$, where the two sines are both equal to ± 1 . Near the minima, then,

$$
\varepsilon_{-}(\mathbf{k}) \approx -4\gamma_0 + \frac{1}{2}a^2\gamma_0 \left(\delta k_x^2 + \delta k_y^2\right),
$$

where δk_x and δk_y are the deviations of k_x and k_y with respect to their values at a given minimum. Hence, the inverse mass tensor is diagonal, and the two eigenvalues are equal, according to the symmetries of a square lattice. Thus, one finds

$$
m_{xx} = m_{yy} = \frac{\hbar^2}{a^2 \gamma_0} = 3.70 \times 10^{-31} \,\text{kg} = 0.406 \, m_0.
$$