
Written exam of Condensed Matter Physics - November 14th 2019 (dedicated session)
Profs. S. Caprara and A. Polimeni

Exercise 1. Consider a one-dimensional crystal consisting of N units cells of size a (the total length of the crystal thus
being L = Na), with a two-atom basis. All atoms are constrained to move only longitudinally. The two inequivalent
atoms have masses M = 4m and m, respectively, and are connected by inequivalent nearest-neighbor springs, whose
elastic constant are KS = 3K and KL = K, respectively [see Fig. 1(a)]. Indicate with un and vn the displacement of
atoms with mass M and m in the n-th unit cell, with respect to their equilibrium positions. Adopt Born-von Karman
periodic boundary conditions. To assign numerical values, consider a = 0.4 nm, m = 9.0× 10−26 kg, K = 2.25 kg/s2.

1. Write the equations of motion for un and vn. Then, assuming traveling-wave solutions un = A ei(qna−ωt) and
vn = B ei(qna−ωt), where q is the wave vector, determine the dispersion law of the acoustic and optical phonon
branches, ωa(q) and ωo(q).

2. Find the dispersion law of the acoustic mode at small |q|, and determine the numerical value of the velocity of
sound cs.

3. Adopting a Debye model for the acoustic branch, ωa(q) = cs|q|, and an Einstein model for the optical branch, with
ωE = ωo(q = 0), determine the low-temperature and high-temperature asymptotic expressions for the specific heat of

the lattice (per unit length), cL. Find the numerical value of cL at T = 3 K, keeping in mind that
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Fig. 1.

Exercise 2. Consider a two dimensional hexagonal Bravais lattice with lattice parameter a = 0.5 nm. The sites of
the lattice are occupied by atoms with external s orbitals. The nearest-neighbor transfer integrals γ = 0.15 eV are
assigned [see Fig. 1(b)]. All other transfer integrals and all overlap integrals are negligible. The zero of the energy is
set at the atomic level, εs = 0.

1. Determine the dispersion law εk of Bloch electrons on the given lattice within the tight-binding approximation,
k = (kx, ky) being the wave vector.

2. Determine the expressions and the numerical values of the elements of the inverse effective mass tensor m−1ij , with
i, j = x, y, at the Γ point of the Brillouin zone.

3. Determine the band width W .

[Useful constants and conversion factors: kB = 1.381 × 10−23 J/K (Boltzmann’s constant), ~ = 1.055 × 10−34 J·s
(Planck’s constant), m0 = 9.109× 10−31 kg (electron mass); 1 eV corresponds to 1.602× 10−19 J].
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Exercise 1.

1. The equations of motion areM ün = −KS (un − vn)−KL (un − vn−1)

mv̈n = −KS (vn − un)−KL (vn − un+1)
⇒

4mün = −3K (un − vn)−K (un − vn−1)

mv̈n = −3K (vn − un)−K (vn − un+1) .

Substituting the traveling-wave solutions we find
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which admits nontrivial solutions for A,B if and only if the determinant of the matrix associated to the system of
linear equations vanishes. Letting in the following Ω ≡

√
K/m, which is the relevant frequency scale in our problem,

the equation that determines the phonon frequencies is
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with ωa(q) = ω−(q) and ωo(q) = ω+(q) describing the acoustic and optical phonon branch, respectively.

2. For the acoustic branch, since for |q|a� 1 we have sin2 qa
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ωa(q) ≈ cs|q|, with cs =
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Inserting the values given in the text, cs = 774.6 m/s.

3. We set ωE ≈ ωo(q = 0) =
√

5 Ω = 1.118× 1013 s−1. Then, the internal energy per unit length is
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with β = 1/(kBT ), and qD = π/a, because in one dimension the Debye sphere coincides with the first Brillouin zone.

At high temperature, kBT � ~ωD, ~ωE , with ωD ≡ csqD =
√

15πΩ/10 = 6.084× 1012 s−1, the exponentials in the
denominators can be expanded to first order, the two phonon modes give the same contribution (equipartition), and
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a
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i.e., we recover the Dulong-Petit (DP) value for a one-dimensional crystal with two atoms per unit cell. For the given
set of parameters cL ≈ 6.903× 10−14 J/(K·m).

At low temperature, kBT � ~ωD, ~ωE ,
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where we adopted the change of variable x = β~csq in the integral over q, and extended the integration limit to
infinity, to extract the leading behavior at small T . In the final expression for u, we neglected the exponentially small
contribution of the optical branch, since the numerical estimate gives ΘE ≡ ~ωE/kB = 85.39 K, i.e., at T = 3 K,
e−β~ωE ≈ e−28.46 ≈ 4.3× 10−13. Thus, at T = 3 K, cL ≈ 0.2124 kB/a = 0.0162 cDPL = 7.327× 10−15 J/(K·m), where
we used the numerical value of the Debye temperature ΘD ≡ ~ωD/kB = 46.47 K.



Exercise 2.

1. The tight-binding dispersion law is
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where the sum over R runs on the six nearest-neighbor lattice vectors (0,±a), ±a2 (1,
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2. Expanding εk near the Γ point, we find
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whence it is evident that
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= 1.621× 1030 kg−1 = 1.456m−10 , m−1xy = m−1yx = 0.

3. Taking the derivatives
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we find that the extrema of the band dispersion are located where
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Calculating the band dispersion in the various points, we find that the minimum is at Γ, where εk = −6γ, whereas
the maxima are found at kx = 4π

3a , ky = 0, and all the equivalent points, where εk = 3γ, hence the band width is
W = 9γ = 1.35 eV.


