Written exam of Condensed Matter Physics - November 14th 2019 (dedicated session)
Profs. S. Caprara and A. Polimeni

Exercise 1. Consider a one-dimensional crystal consisting of NV units cells of size a (the total length of the crystal thus
being L = Na), with a two-atom basis. All atoms are constrained to move only longitudinally. The two inequivalent
atoms have masses M = 4m and m, respectively, and are connected by inequivalent nearest-neighbor springs, whose
elastic constant are Kg = 3K and Ky, = K, respectively [see Fig. 1(a)]. Indicate with u, and v, the displacement of
atoms with mass M and m in the n-th unit cell, with respect to their equilibrium positions. Adopt Born-von Karman
periodic boundary conditions. To assign numerical values, consider a = 0.4nm, m = 9.0 x 10726 kg, K = 2.25kg/s%.

1. Write the equations of motion for u, and v,. Then, assuming traveling-wave solutions u,, = Aeilana—wt) apd
v, = Bellana—wt) where ¢ is the wave vector, determine the dispersion law of the acoustic and optical phonon
branches, w,(q) and w,(q).

2. Find the dispersion law of the acoustic mode at small |g|, and determine the numerical value of the velocity of
sound c;.

3. Adopting a Debye model for the acoustic branch, w,(q) = ¢s|g|, and an Einstein model for the optical branch, with
wg = we(q = 0), determine the low-temperature and high-temperature asymptotic expressions for the specific heat of

the lattice (per unit length), c¢z. Find the numerical value of ¢f, at T = 3K, keeping in mind that fooo oy dr = %2.

(a) (b)

Fig. 1.

Exercise 2. Consider a two dimensional hexagonal Bravais lattice with lattice parameter a = 0.5nm. The sites of
the lattice are occupied by atoms with external s orbitals. The nearest-neighbor transfer integrals v = 0.15eV are
assigned [see Fig. 1(b)]. All other transfer integrals and all overlap integrals are negligible. The zero of the energy is
set at the atomic level, ¢, = 0.

1. Determine the dispersion law e of Bloch electrons on the given lattice within the tight-binding approximation,
k = (kg, ky) being the wave vector.

2. Determine the expressions and the numerical values of the elements of the inverse effective mass tensor m;jl, with
1,7 = x,y, at the I point of the Brillouin zone.

3. Determine the band width W.

[Useful constants and conversion factors: kp = 1.381 x 10723 J/K (Boltzmann’s constant), A = 1.055 x 10734 J-s
(Planck’s constant), mg = 9.109 x 103! kg (electron mass); 1 eV corresponds to 1.602 x 10719 J].
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Exercise 1.
1. The equations of motion are
M iy, = —Kgs (tun, — vp) — Kp (U, — Up—1) dm i, = —3K (un —vy) — K (U, — Up—1)
m, = —Ks (v —un) — K1, (05, — Un41) mo, = —3K (v, — up) — K (v, — Unt1) -
Substituting the traveling-wave solutions we find
(4mw? —4K) A+ K (3+¢ ) B=0
K (3+4¢€"") A+ (mw? —4K) B =0,

which admits nontrivial solutions for A, B if and only if the determinant of the matrix associated to the system of
linear equations vanishes. Letting in the following Q = /K /m, which is the relevant frequency scale in our problem,
the equation that determines the phonon frequencies is

w — 50 w? + 30 sin? % =0,

whose solutions are
5 =2 12 qa
2 .2
=20 (1441
wil(q) ) ( 55 SII° 5 > ,
with we(q) = w_(q) and w,(q) = w4 (q) describing the acoustic and optical phonon branch, respectively.

2. For the acoustic branch, since for |gla < 1 we have sin? T~ (%)2 and (/1 — 2—3})(qa)2 ~1-— —(qa) we find

V15~
wa(q) = cslql, with ¢; = To Qa.

Inserting the values given in the text, c¢s = 774.6 m/s.

3. We set wg ~ w,(qg=0) = V50 =1.118 x 10" s~ . Then, the internal energy per unit length is

=Y Tt dg hw(g) ~ [ da_ hegq I
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with 8 =1/(kgT), and qp = 7/a, because in one dimension the Debye sphere coincides with the first Brillouin zone.
At high temperature, kgT >> hwp, iwg, with wp = csqp = V1571Q/10 = 6.084 x 102571, the exponentials in the
denominators can be expanded to first order, the two phonon modes give the same contribution (equipartition), and

2kpT 2k
B - B _ DP

U~ cL,=——=c]
a )

a

i.e., we recover the Dulong-Petit (DP) value for a one-dimensional crystal with two atoms per unit cell. For the given
set of parameters ¢z, ~ 6.903 x 10714 J/(K-m).
At low temperature, kpT < hwp, hwg,

~ hics (kBT)Q/OO ,,x dx + hwEe*BFLwE ~ LQMD, <kBT>2 = ¢ = mkp (M> )

T heg o €e*—1 a 6a hwp 3a hwp
where we adopted the change of variable x = Bhcsq in the integral over g, and extended the integration limit to
infinity, to extract the leading behavior at small T'. In the final expression for u, we neglected the exponentially small
contribution of the optical branch, since the numerical estimate gives O = fiwg/kg = 85.39K, ie., at T = 3K,
e PhwE ny 72846 5 4.3 x 10713, Thus, at T = 3K, ¢z, =~ 0.2124kp/a = 0.0162 P = 7.327 x 1071 J/(K-m), where
we used the numerical value of the Debye temperature ©p = fiwp /kp = 46.47K.




Exercise 2.
1. The tight-binding dispersion law is
€k = —7 Z eiR.ka
R=nn

where the sum over R runs on the six nearest-neighbor lattice vectors (0, +a), £5(1, V3), +5(1, —+/3). Hence,

e = —2v [cos(akm) + 2 cos (;akm) cos <\é§aky>1 .

2. Expanding €, near the I" point, we find

ep = —6y + %azfy (k2 + ki) ,

whence it is evident that

3a?
1 _ -1 207
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=1.621 x 10 kg™ = 1.456 m; ', myl=m_ =0

3. Taking the derivatives

Oer (1 1 V3 Oere 1 (V3
o 2va sin (Qakz) [2 cos <2ak1> + cos <2aky>1 , a—ky = 2v/3va cos <2akz> sin <2aky ,

we find that the extrema of the band dispersion are located where

sin (3ak,) =0, cos (2ak;) =0, cos (3ak,) = +1,
or or
sin (@aky) =0, cos (?ak@) =0, sin (@aky) =0.
Calculating the band dispersion in the various points, we find that the minimum is at I', where € = —6, whereas

the maxima are found at k, = g—g, k, = 0, and all the equivalent points, where e, = 37, hence the band width is
W =9y =1.35¢eV.



