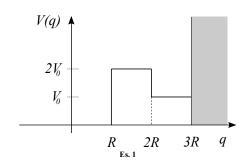
Corso di Meccanica Statistica Proff. A. Crisanti e A. Vulpiani Compito del 22.02.2016



Es. 1

Si consideri un gas classico bidimensionale costituito da N particelle identiche di massa m non interagenti con Hamiltoniana di singola particella

$$H(\mathbf{p}, \mathbf{q}) = \frac{1}{2m} |\mathbf{p}|^2 + V(|\mathbf{q}|), \quad \mathbf{p}, \mathbf{q} \in \mathbb{R}^2$$

e potenziale

$$V(q) = \begin{cases} 0 & q \le R, \\ 2V_0 & R < q \le 2R, \\ V_0 & 2R < q \le 3R, \\ +\infty & q > 3R, \end{cases}$$

dove $V_0 > 0$ è una costante e $q = |\mathbf{q}|$.

Supponendo che il gas sia in equilibrio termodinamico a temperatura T, si calcoli

- 1. L'energia media per particella U(T)/N;
- 2. La pressione P sul bordo del disco $|\mathbf{q}| = 3R$;
- 3. La temperatura T_0 alla quale il numero medio di particelle contenute nella regione di spazio $2R < |\mathbf{q}| < 3R$ è la metà del numero medio di particelle contenute nella regione di spazio $|\mathbf{q}| < R$.

Es. 2

Si consideri un gas quantistico bidimensionale costituito da N particelle identiche non interagenti di massa m e spin σ , vincolate a muoversi in una regione di spazio di area A con Hamiltoniana di singola particella

$$H(\mathbf{p}, \mathbf{q}, \sigma) = c(1 + a\sigma) |\mathbf{p}|, \quad \mathbf{p}, \mathbf{q} \in \mathbb{R}^2$$

dove c > 0 e |a| < 1 sono costanti.

Assumendo che il gas sia in equilibrio a temperatura T, si chiede:

- 1. Nel caso le particelle siano bosoni con $\sigma = -1, 0, +1$:
 - (a) Mostrare che esiste la condensazione di Bose-Einstein e calcolare la temperatura critica T_c ;
 - (b) Calcolare la frazione di particelle nel condensato per $T = T_c/2$.
- 2. Nel caso le particelle siano fermioni con spin $\sigma = -1, 1$:
 - (a) Calcolare il valore medio $\langle \sigma \rangle$ a T=0;
 - (b) L'energia totale U(T=0) del gas in funzione di N.

• Risposte

Nota: La costante di Botzmann $k_{\rm B}$ è presa uguale a 1, di conseguenza $\beta^{-1}=T.$

1.1

$$U(T)/N = T + V_0 \frac{6 e^{-2\beta V_0} + 5 e^{-\beta V_0}}{1 + 3e^{-2\beta V_0} + 5e^{-\beta V_0}}.$$

1.2

$$P = \frac{NT}{\pi R^2} \frac{e^{-\beta V_0}}{1 + 3e^{-2\beta V_0} + 5e^{-\beta V_0}}.$$

1.3

$$T_0 = \frac{V_0}{\ln 10}.$$

2.1.a

$$T_{\rm c} = \sqrt{\frac{h^2 c^2 (1 - a^2)^2}{2\pi \zeta(2)(3 + a^4)}} \frac{N}{A}.$$

2.1.b

$$\boxed{\frac{N_0}{N} = \frac{3}{4}}.$$

2.2.a

$$\boxed{\langle \sigma \rangle = -\frac{2a}{1+a^2}.}$$

2.2.b

$$U(T=0) = \frac{hc(1-a^2)}{\sqrt{2\pi A(1+a^2)}} N^{3/2}.$$