Testi
La seguente lista riporta alcuni testi ed articoli di riferimento relativi agli argomenti trattati nel corso.
Gli studenti possono comunque utilizzare qualsiasi testo pertinente agli argomenti trattati.
- Referenze Principali
- Handbook of Stochastic Methods,
C.W. Gardiner
Springer (1985)
- Stochastic Runge-Kutta algoritms. I. White noise,
R. L. Honeycutt
Phys. Rev. A 45, 600 (1992)
- Path integral methods for dynamics of stochastic and disordered systems,
J.A. Hertz, Y. Roudi and P. Sollich
J. Phys. A: Math. Theor. 50 (2017) 033001
doi:10.1088/1751-8121/50/3/033011
- Path integral methods for Stocahstic Differential Equations,
C C. Chow and M. A. Buice
J. Math. Neuroscience (2015) 5:8
doi:10.1186/s13408-015-0018-5
- State-dependent diffusion: Thermodynamic consistency and its path integral
formulation,
A W.C. Lau and T.C. Lubensky
Phys. Rev. E 76, 011123 (2007)
doi:10.1103/PhysRevE.76.011123
- Field Theory of Non-Equilibrium Systems,
Alex Kamenev
Cambridge University Press (2023)
- The Spherical p-spin Interaction Spin Glass Model: The Dynamics,
A. Crisanti, H. Horner, H.-J. Sommers
Zeitschrift fur Physik B 92, 257-271 (1993)
doi: 10.1007/BF01312184
- Additional References
- The Fokker-Planck Equation,
H. Risken
Springer (1989)
- Stochastic Differential Equations: An introduction with applications,
B Øksendal
Springer (1998)
- Quantum Field Theory of Non-equilibrium States,
J. Rammer
Cambridge University Press (2007)
- Effective action for composite operators,
J.M. Conrwall, R. Jackiw and E. Tomboulis
Phys. Rev. D 10, 2428 (1974)
- Spherical 2+p spin-glass model: An analytically solvable model with a glass-to-glass transition,
A. Crisanti, L. Leuzzi
Physical Review B 73, 14412 (2006)
doi: 10.1103/PhysRevB.73.014412
- Chaos in Random Neural Networks,
H. Sompolinsky, A. Crisanti, H-J. Sommers
Phys. Rev. Lett. 61, 259 (1988)
doi: 10.1103/PhysRevLett.61.259
- Path integral approach to random neural networks,
A. Crisanti, H. Sompolinsky
Phys. Rev. E 98, 062120 (2018)
doi: 10.1103/PhysRevE.98.062120
- Chaos in Random Neural Networks,
A. Crisanti
Slides Goetingen May 2016.
|