FISICA 1 – Matematica

Prova scritta del 16-11-2012

Motivare sinteticamente tutte le risposte ai quesiti e scrivere le formule risolutive La prova intermedia è limitata ai primi tre esercizi

- 1. Un corpo di massa m=1 kg è vincolato a muoversi lungo un binario con attrito posto in un piano verticale ad avente la forma descritta dall'equazione y=2-x, con x e y misurate in metri. Oltre alla forza peso esso è soggetto ad una forza $\mathbf{F}=(-2;0)$ N costante. Sapendo che partendo da fermo dalla posizione (0;2) m esso raggiunge l'asse x con una velocità v=4,668 m/s, si calcoli il coefficiente di attrito dinamico μ tra il corpo e il binario.
- 2. Due corpi di massa m_1 e $m_2 = f$ m_1 , con f = 1/3, sono collegati da una fune inestensibile e di massa trascurabile. Il primo corpo è libero di muoversi lungo la verticale, mentre il secondo si trova su un piano inclinato rispetto all'orizzontale di un angolo $\alpha = 30^\circ$, con coefficiente di attrito $\mu = 1/(2\sqrt{3})$. Il primo corpo viene fatto cadere, partendo da fermo, da un'altezza y_0 e, nel suo moto verso il basso, trascina lungo il piano il secondo corpo in quanto la fune viene fatta scorrere su un'apposita carrucola (di massa trascurabile). Trovare la formula che esprime la velocità del primo corpo $v_1(y)$ in funzione dell'altezza dalla base del piano inclinato.
- 3. Un pendolo e' formato da una asta di lunghezza L=0.88 m, rigida sottile e di massa trascurabile, fissata ad una estremità ad un vincolo senza attrito con l'altra attaccata ad una massa m=2.20 kg, libera di ruotare in un piano verticale. Quando si trova nel punto piu' basso la massa ha un'energia cinetica $K_0=45.4$ J, calcolare la forza di tensione esercitata sulla massa dall'asta quando questa, nel corso del moto di rotazione, si trova in posizione orizzontale.

- 4. Due sfere di dimensioni molto piccole e massa $m_1 = 4.0$ kg e $m_2 = 1.0$ kg sono poste alle estremità di una asta rigida, molto sottile e di massa trascurabile di lunghezza L = 0.80 m libera di ruotare in un piano verticale attorno ad un asse fissato ad un punto la cui distanza dall' estremita' dell'asta a cui e' fissata la massa m_1 è $L_1 = 0.60$ m. L'asta viene lasciata libera da ferma nella posizione orizzontale. Calcolare la sua velocità angolare quando la massa m_1 passa per il punto piu' basso della sua traiettoria.
- 5. Una massa m = 1,0 kg di acqua alla temperatura di 30 °C è posta in un contenitore a pareti adiabatiche costituito da cilindro chiuso da un pistone mobile senza attrito su cui agisce la pressione atmosferica P_0 . All'acqua è fornita una quantità di calore esattamente sufficiente a portarla a 100 °C ed a farla evaporare completamente. Al termine del processo, il volume e' variato dal valore iniziale $V_0 = 0,001$ m³ del liquido a V = 1.671 m³ del vapore. Calcolare la variazione di energia interna del sistema. (Calore specifico dell'acqua c = 4180 J/kg K, calore latente di evaporazione dell'acqua $\lambda = 2,256$ 106 J/kg, $P_0 = 10^5$ Pa).
- 6. Una macchina di Carnot che opera fra una sorgente a temperatura $T_1 = 300 \text{ K}$ ed una sorgente a temperatura $T_2 = 800 \text{ K}$, fornisce in ogni ciclo un lavoro L = 1000 J. Calcolare la variazione in un ciclo della entropia ΔS_1 della sorgente a temperatura minore.

$Fisica\ 1-Matematica \\ [\ soluzioni\ esercizi\ 1^{\circ}\ esonero\ (1-3)\ e\ appello\ straordinario\ (1-6)\]$

A) Binario etilineo, Iuclinazione
$$d = 45^{\circ}$$
 $E_{0} = U_{0} = mgy_{0}$
 $E_{f} = \frac{1}{2}mv^{2}$
 $E_{f} - E_{0} = L_{F} - L_{eff}$
 $L_{F} = -Fz_{0} = -Fy_{0}$
 $(z_{0} = y_{0})$
 $L_{off} = -\mu NL = -(\mu mg + \mu F) y_{0}$
 $N = (mg + F) \cos \alpha$
 $L_{f} = \frac{y_{0}}{\sin \alpha}$
 $\cos \alpha = \sin \alpha$
 $L_{f} = \frac{y_{0}}{\sin \alpha}$
 $\cos \alpha = \sin \alpha$
 $L_{f} = \frac{y_{0}}{\sin \alpha}$
 $\cos \alpha = \sin \alpha$
 $L_{f} = \frac{y_{0}}{\sin \alpha}$
 $\cos \alpha = \sin \alpha$
 $L_{f} = \frac{y_{0}}{\sin \alpha}$
 $\cos \alpha = \sin \alpha$
 $L_{f} = \frac{y_{0}}{\sin \alpha}$
 $\cos \alpha = \sin \alpha$
 $L_{f} = \frac{y_{0}}{\sin \alpha}$
 $L_{f} = -\mu NL_{f} = -\mu NL$

2)
$$m_{1} g(y_{0} - y) = m_{2} g(y_{0} - y) \sin d + y$$

$$+ (\mu m_{2} g \cos d) (y_{0} - y) + \frac{1}{2} (m_{1} + m_{2}) V^{2}$$

$$\frac{1}{2} (m_{1} + m_{2}) V^{2} = g(y_{0} - y) (m_{1} - m_{2} \sin d - \mu m_{2} \cos d)$$

$$= g(y_{0} - y) (m_{1} - \frac{1}{2} m_{2} - \frac{1}{2\sqrt{3}} m_{2} \frac{\sqrt{3}}{2})$$

$$= g(y_{0} - y) (m_{1} - \frac{3}{4} m_{2})$$

$$V^{2} = \frac{2g(y_{0} - y)}{m_{1} + m_{2}} (m_{1} - \frac{3}{4} m_{2}) = 2g(y_{0} - y) \frac{m_{1} - \frac{m_{1}}{4}}{m_{1} + \frac{m_{2}}{3}}$$

$$V^{2} = 2g(y_{2} - y) \frac{3/4}{4/3} = \frac{9}{8} g(y_{2} - y)$$

$$V = \frac{3}{2} \sqrt{\frac{9}{2}} (y_{2} - y)$$

m, scende di yo-yo = spostamento di mz lungo il piano mz sale di (yo-y) sind

	$T \equiv F_c$ $T = \frac{mv^2}{L}$
	$mv^2 = \frac{2k_0 - 2m_RL}{L} = \frac{2k_0 - 2m_R}{L}$
E 01-	$T = \frac{2.45.4}{0.88} - 2.2.2 - 9.81 = 600N$
	•
4) m	L_1 L_2 $\Delta U = n_1 g L_2 - m_1 g L_1 = -\Delta K$
	$\frac{1}{2}I\omega^2 = (m_1gL_1 - m_2gL_2)$
	$I = m_1 L_1^2 + m_2 L_2^2$
	$\omega = \sqrt{\frac{2g(m_1L_1-m_2L_2)}{m_1L_1+m_2L_2}}$
Parada de la composição	
	$= \sqrt{\frac{2.9.81 \left(4.06-02\right)}{4.06^2+0.2^2}} = 1.98 \text{ mad/s}$
5) 4	1U=Q-L Q=Q1+Q2
State of Section	Q = mc(Th-Tim), Qo= ml
	$a = m \left[c \left(T_p - T_{i} \right) + \lambda \right]$
	L = Po (Vg Vin)
	ΔU= m [c(Tfm-Th)+λ] - Po (Vfm-Vin)

.

•

$$Q_{1} = 1,0 \times 4180 \times 70 = 2,926 \times 10^{5}$$

$$Q_{2} = 2,256 \times 10^{6}$$

$$Q_{3} = 2,55 \times 10^{6}$$

$$Q_{4} = 2,55 \times 10^{6}$$

$$Q_{5} = 2,55 \times 10^{6}$$

$$Q_{7} = 2,55 \times 10^{6}$$

6)
$$\Delta S_{1} = -\frac{Q_{1}}{T_{1}} \quad (\text{tenf. instanse}) \quad , \quad \eta = \frac{L}{Q_{2}} \quad , \quad \frac{Q_{1}}{Q_{2}} = -\frac{T_{1}}{T_{2}}$$


$$Q_{1} = Q_{2} \left(\eta - 1 \right) = L \frac{\eta - 1}{\eta}$$

$$Q_{1} = L \left(1 - \frac{1}{\eta} \right) = L \left(1 - \frac{1}{1 - \frac{T_{1}}{T_{2}}} \right) = L \left(\frac{-T_{1}/T_{2}}{1 - T_{1}/T_{2}} \right)$$

$$Q_{1} = -L \frac{T_{1}}{T_{2} - T_{1}} \qquad Q_{1} = -L$$

$$T_{2} - T_{1} \qquad T_{2} - T_{1}$$

$$\Delta S = \frac{L}{T_2 - T_1} = \frac{1000}{500} = 2 J/K$$

