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1. LINEAR RESPONSE TO A DYNAMICAL DISTURBANCE. THEORY
1.1, Response function and generalized susceptibility

The system to which we apply an external force at a given time s
assumed to be [nlitially in a state of thermodynamic equilibrium, The un-
perturbed system {8 characterized by a density operator D which is non-
negative definite with: ' :
TrD=1 (1.1)

The mean value of any operator B related to the system ls given by:

(B> = Tr (DB) (1.2)

and therefore D determines the state of the system completely.

For a classical system, D would be & pi-obibllity distribution in a
phase space, rather than an operator, and each observable B would be a’
function defined In this space. In the classical Umit, the formallem la

not fundamentally different; consequently, we shall deal malnly with
quantum systems, but the results will often be extended to classical

systems by passing to the imit i= 0,

When the system is at thermal equilibrium, the denslity operator must
be:
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where H is the effective Hamliltonlan and Z the partition function. Actually,
if, for example, the system consists of a set of identical particles and if
the number of particles la not fixed we must put:

H=g-uN (1.4)

where ¢’ 15 the true Hamiltonian, u the chemical potential and N the

number of particles,
Let us now apply a time-dependent external disturbance to the system,

In this case, the Hamiltonian H is replaced by the time-dependent

Hamiltonlan H(t):

H{t} = H + v {t} (1.5)

where v {t} is supposed to be a small perturbation. Since we are only
interested In linear responses, we may assume without loss of generallty
that v {t} has the simple form:

vitl =-a(t)A (1.8)

where A |s a constant operator, and a(t) a function of time representing a
generalized external force and vanishing for remote times. Actually, it is
convenient to assume that a(t) vanishes exponentially when t goes to
infinity:

Jewlthe> 0~ Um e ' aft)=0 (1.7)

="

As a consequence of the perturbation, the average of the operator B becomes
time-dependent and its mean value, at time t, will be denoted by {(B (t))

The linear relation between this quantity and the small perturbing Etemlal

can be written in the form:

<B(t)>' -{B) -fXM(t-t')n(t') dt! + (1.8)

where Xg, (t) 18 assumed to be a bounded functlon of t:
[Xg )] < C (1.9)

This mathematical assumption expresses the fact that the system reacts
in a rather emooth way to any percussion, {.e. any strong instantaneous

perturbation,
Thus, X, (t) defines a linear reaponse. Owing to causality requlre-

ments, we have, howevdr,
Xea (t)=0 t<o

(1.10)

Therefore, the preceding equation must be written:

1
<BI), - <BY « [ X, 1=ty a(e) au (1.11)

S ) @
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This relation takes a very almple form if we ude Fourier transforms.

For this purpose, it is useful to associate a function Xpa (z) of the complex
variable z =z' +1z" with X, (t); for z" > 0 this functlon is defined by the

following (Lebesgue) integral:

X”(z)-f}(“(t) e*dt = fxu(t)e'"dt (1.12)
- 0

As Xpalt)is assumed to be bounded, the lntegral converges uniformly in
any domain z" 3 ¢ > 0 and therefore defines an analytic function Xp,(z) of
z in the upper part of the complex plane of z (i.e. z" > 0),
Actually, by putting z =w+ {e, we can write:

DSOW\—:@:-

Xy (0 +1€) -fx"me'“ o« (1.13)

which showa that for a given value of ¢, Xga(w+1¢) can be considered as the
Fourier transform in w of the function Xg,(t) exp(-€t). By passing to the
Ilmit € -0, we can define a function (or, in special cases, a distribution)

XgAw):

XM(u) = XM(UHD) = Um X.M(u+lz) (1.14)
=0

which is the boundary value of the analytic function Xp,(z) on the real axis,
Conversely, we have:

Xgft) * 2= f)(M(u) e du

With the same kind of notation, the Fourier transform a(w) of a(t) can
be defined by:

(1,15)

i) W fe‘“"e'“amd:a Um [ dte™ e a(t) (1.16)
2r =0 J
Thuse, a(t) I8 equal to:
m (1.17)

a(t) = fa(u) e e du

In the same way, the function {B(t)) - {B)can be expressed in terma of ita
epectral distribution:

(B(t)) - <B)>" fﬁ(u) el Oy (1.18)
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4
= where B(w) I8 given by: . In the same way, we define x!'A(w) and X3, (w) by (see Eq.(1.13)) :-ii’:
‘e 5! A 50 dwew | v ‘ ‘ ig
Blw) = -23; f [<Bm>_- (B)]e‘“"'“‘dt (1.19) | &e Gorf - e T f X1,(t) ol gy (1.26) Tt
.. ' (€20) wew deve el B ? Atk
Then Eqs (1.8) and (1, 9) can be written in the simple form: L{ﬂ»’e f’v{ = ”‘/c"’")_’t"’.: ’ 4= T . : '
- S wmadedo it xp e [ me oMt (1.27) il
Buﬁ"“ﬁm "%em'}“ TeTe B(w) =Xp,(w) a(w) (1.20) — o ' {_ Ll I
; : ‘oo -0 g c ol
" { * : 167 vecl Wi
. Pro v Thus, Xg4w) can be regarded as a generalized susceptibllity. Thus, we have: ’K IVE é [‘ O(ﬁ‘“‘) *xmf'f))-é Vi c‘l"é' Dqpu-tr i1}
,, TR ') At this polnt, we must remark that the appearance of broken symmetries Ab -po _ Fog iy | i
‘ﬂ * /| may sometimes obscure our simple picture. Let us conglder, for example, ) 1 RHE
" a ferromagnetic system at a temperature below the Curie polnt, In the Xy, (W) = 7 [x"u) + X, -u)] (1.28) 0

2 /g absence of any magnetic field, the average magnetic moment is zero, but
-m, 0 M, n if we apply to the system a very small magnetic fleld By, a {inite magnetic
! moment appears. Thus, the influence of this infinitesimal field changes, {
M=o ¢uwe in a drastic way, the nature of the density operator. However, for a given Xga(w) = - 2 [x”(u) - xd-u)] (1.29)
. i value of by, we can define a magnetic susceptibility X (w, By) which describes . i
- Il o ¢ the variations of the magnetic moment produced by adding (for instance in ik
Mt [ wi wax. the same direction) a small fleld B(t) to By. Thus a magnetic susceptibility These quantities satisfy symmetry conditions: ;JE; N

< ‘ for a zero fleld can be defined as the Limit of X (w, Bg) when By= 0. The " i
F < same kind of behaviour la to be expected when strong modifications of the x'A(u) = x;'(-w) = [I'M(u)] (1,30) \:i '
inf{lablg state of a system can result from its interactionwithinfiniteslmal saymmetry- ' i
breaking external sources, e
» e
. 1.2, Reactive and absorptive part of a susceptibility. Definition n:\ (w) = - x:'(—u) . [":4“)] (1.31)
I L}
i l _The response function Xpalt) can always be written in the form:
odoAbE RARE 3 : 5 Thus, in the space of the operators A or B, X' (w) and-X"(w) may be con-
Cvv e A R 3%,,(6) = X},(1) + X3, (1) (1.21) sidered Hermitian,
' Incidentally, we remark that X}, (w) and X},(w) are both real, In this
where by definition we have: ) case, we have:
Xpal=t) = X4 (t) (1,22) ‘ . )
. . x"u(u) -fcouutXM(t)e dt (1.32)
Xpa(=t) = = X2,(t) (1.23) .
In fact, X;,(t) and XZ,(t) are also defined by: -
Xex (W) -fsinut X, (1) e at (1.33)
X1, (1) -% [xum +_xn(-t)] (1.24) | 2
and, conversely:
i -
xh(t) e [X"(t} - xAJ—t)] (1.25) Xha(t) --} fcos wt X, (w) dw (1.34)
0
For reasons which will be given later on, Xpa(t) and XJa(t) will be called -
the reactive and the absorptive part of the response function, respectively. anm .- L f sin wt x:A(u) dw (1,38)
{Note that X}, (t) ls real and Xg,(t) is purely imaginary.) : A "
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1.3, Kramers and Kronig dispersion relations

The causal nature of the response function implies relations between
x'u (w) and Xja(w). These dispersion relations are derived by expressing
the analytic function Xg,(z) In terma of its boundary value Xga(w).

This result {8 usually obtained by writing Xp{z) as a Cauchy integral
on the contour ¥ of Flg.1, This contour consista of a fraction of a lne
parallel to the real axis (at a distance ¢ above It) and of a fractionof a
circle centered at the origin (radius R).

X, gl x)
Xyi2) * z—:{ f o dx (1.36)
L

xX=-Z

Now the Lebesgue lemma [1] says that X (w+ie) which is the Fourier
transform of the "good" function Xp,t) exp (-¢t) goes to zero when |w|-%0
On the other hand, since X,,(t) {s bounded in the domain z"> €, Phragmen-
Lindel6f theorem [2] can be appllied and it shows that in the domaln z"> ¢,
the preceding conditions {mply the uniform convergence of Xg,z) to zero
when |z2|-~ o, - :

Let ua then keep ¢ fixed and'let R increase, We see that, as a con-
sequence of the preceding remark, the integral on the circle must vanish
in the imit R -« @, Therefore, in this limit, Eq.(1.35) becomes:

=

L [Xpdutie)
Xeu2) * 5o que-z dw | (1.37)
.

The same result can be obtalned by direct application of the following
theorem given by Titchmarsh [3],

Theorem

Let @(z) be an analytic function regular for y > 0 and let

‘=

f [o(x +1y)?| dx

@ By

exist and be bounded, Then, as y - 0, ®(x+ly) converges in mean to-
ward a function @(x) and also &(x +ly) - ¢(x) for almost all x, For y > 0:

+m

.l [3(u)
Biz) 27l fu-z du

@

(1.38)

. On the other hand, as Xg,(z'+1
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In order to apply this theorem, we put:

zsx+ly+ie yz0 (1.39)

XM(z) B x“(x-i-lyﬂc) s &(x +1y) (1.40)

z") 1s the Fourier transform in z' of
1 Xaalt) exp (-z"t), Parseval's theorem leads to the !ollowin_g condition for

IELE ¥ &

=' ‘o ‘= 2 2
| [l gz |f dzt = 20 [ X0 P €™ dts S5 s L (1.41)
; _[l BA' l :[ B z €

LThus, Titchmarsh's theorem can be directly applied and we obtain

Eq.(1.37) again. .

“.. In order to express XgJz) in
physical interest, we consider now t
functlon Xg4t) is square {ntegrable,
for € =0, Then, Xg,(u) is also a fun

terms of Xg,(w) which is a quantity of
he limit € = 0. We note that If the
Titchmarsh's theorem can be applied
ction of square integrable modulus and

we have: R
= -
. TICLEL SR B . LU (1.42)
XE*(Z)‘-Z-'t_ifu+10-z B Td J -z
o X

hand side of this
Incidentally, we verify that the {ntegral on the right
equation 8 convergent, However, {f the square of Xpt) 8 not integrable,
the preceding equation can be given a meaning if we consider Xgalw) tobe a

distribution.

Finally, dispersion relations are obtalned when z becomes real
(z" - + 0), We get:
‘1 o-xaA(ulI) “ 43)
e ———— ] «
XM(U) B X”(u-HO) -211 w'-w-10 d
Making use of the relation
e N N (1.44)
w'-w-10 = w-w +iwd(ut-u)
Eq.(1.43) can be written in the simple form:
=
L fale] g, (1.48)
!Ju 7 f o dw
I e RS .

e explicitly by separating the Hermitian'
(1.29)). !

: This equation can be written mor
iand the anti-Hermitian part of Xp{w) (see Eqs (1.28)and
il ) e
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This operation leads to the Kramers-Kronlg relations:

+ " i
x;A(u)-%f%:’-du' (1.45)
. ;
Xpp (0) = = 3 -—:’f*_(—“;—)d ' (1.47)

which are very useful for the Interpretation of many experiments,
; Thus, we see that the total response Xpa(w) can be expressed in terms .
) ;’of Xgw) or Xys(w), only, However, In general, the function X, (w) (which
|/ |/ corresponds to the absorptive part of the response function) {8 more
localized than Xp, (w), For this reason, it is Interesting to express Xg,(w)
in terma of X§, (w) only, Actually, from the Kramers-Kronig relations,

- we deduce:

xn(”) - L “M‘_‘_X i dw'

Ar J w-w-10 [1.43)
We may remark also that (for 2*> 0):
+m
L1 [ XA
I'A(z) ¥ f w-z aw “‘_49)

a relation which can be derived easily from Eq.(1.42) by using relation
(1.46).

1.4, Formal expresslon of the response function, Kubo formula

For a quantum system {n a state of equilibrium the density operator D
is a constant in any representation (Helsenberg, Schrddinger, or inter-
action representation). On the other hand, the formal expressions giving
the response function Xp,(w) In terms of H, A and B may be derived by using
any representation. However, It may be simpler to use the interaction
representation as will be done here,

First, we shall define the time-dependent operators A(t) and B(t)

by putting:

T H
R V- Aty=e ™ ae *? {1.50)
] e H
W, o T ‘ B(t)=e® Be " (1,51)
7 v |

\"\‘ In the interagtion representatlon, the density operator D(t) Is glven by its
|

initial value and the equation:

~
»
1 I Ht Ht

E .. -1
{ mD(t)-[eTv{!} e T.Dm]--mm. D)) a(t) (1.52) .
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On the other hand, we have:
o, - ¢8>+ v (1000 - DI BO) (1.59)
Now, we may put: .
D(t) = D + éD(t) (1.54)
where 6D(t) g given in the linear approximation by
(1.55)

11
sD(t) = m"f [A(t"), DI aft!) dt*

This expresslon 18 rather formal, but a really mann-lnglul result is obtalned

by using this expression in Eq.(1.53): P
. ]
¢B(O)Y - <BY = 1n7! fdv a(t') Tr (lMt'). bl B(ﬂ) (1.56)
v
A D 1 oos - DONLA- D 0,

By using the cyclic invariance of the trace, we obtaln:

v ;
<B“')>v -<B> = 1h-lf dtta(t') Tr (D[B“)c A(t')]) (1-57}

1
. m—! f([B(t). Alt)]D a(t!) dt! (1.58)

By comparing this expreasion with the deflnition (1.11), we get finally:

X, (t-t1) = ™ <L), AU ©t-t) fr.58)

- x> s 0 for
where ©(t) 1s the step functlon (e(0) = }, B(x)=+1 for“x:gﬁ{:}l“ o
x<0), Incidentally, we see {mmediately that this l;tlmcd cnme it
causallty requirements (Eq.(1.10)). On the other llt? '.l i
function must be real since B(t) and A(t') are Herml an, et Ao
the mean value of their commutator is purely lmagdr::;-y‘:en“ u-t'i e
fact that the responae function depends only on the e

immediately evident since we have:

. e(t-t!) oH
x, (t-0) = - QLD (B, A= - Sz T e (300, A1)

(t-t') -, iHQer) o cIHEET) 40 S(t-t!) -11), A
- S B MM e, AL - SEECBL-, AL

(1.00)

e T
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-] fun tion
onse Cc CDnEEqueﬂtIy, t tl e lln o] It y can
o have he me reversa Vﬂl'iﬂll eo IIE system be expreled

The Hermltia&n and anti-Hermitian parts of the resp
very simple expressions; according to Eq.(1.598)and the deflnitions (1.24) as follows:
and (1.25) we have (eft)= -1 +26(t)): )
U (gett) = 1 e(t-t! B! 1.61 s . “BH(B)
Xpalt-t) tzn™ ele-t1) LB AL " (1.61) | X, ft-t',b) = - ©(t-11)Z ITr (e - (B(Y) A(t')i> (1.7
- ! .70
. X3, (t-11) = (20) L¢(BIY), ANID (1.62) _ ) )
Peos - 3 -1 ~BH(b)
ﬁ o z . , e(t-t')Zz "Tr (8[A(-tl)' B{"” e 6-1 (1 T
Incidentally, we remark that X“(t-t') can be written i{n terms of x“(t-t ) ) -ih .T1)
or (t-t') alone: -
Xaa ‘ - : :::rea: H(tB) {s the Hamiltonlan considered to be a function of b (Z
XBA{E-U) . 218“"')3‘3,\“'”) = 26(t-t") XIBA“-u) [ (1.63) (01671 f‘n lunder time reversal). The last equation can be w {s
G -1) ritten
Actually, the first relation colncldes with the disperslon relation (1.48).
X {t-t', b) = =€ Ly el ~BH(-B)
BAS e O(t-t) 2 Tr ([A(t e
1.5. Symmetries AR (A1), B(t)] 1h ) (1,72)
The reality of the response function implies relations between the s -¢¢ e(t-t')z'l Tr (e'ﬂm-'i) [
real and the {maginary parts of Xpalw): AB T B(t), A(t')l) (1,73)
Finally, we get: ‘
Re X,,(w) * Re X, (-w) (1.64)] |
| Xttt B) = g Xyttt B) (1.74)

Im X, (w) = - ImX (=w) (1.65)

BA BA or, by using Fourier transforms:

as we have seen, bétween the Hermitian and the antl-Hermitlan X (0 K -
afWiB) = € 6 X, [, =b) (1.75)

{1.30) and (1.31)):
1,6, Absorption and interpretation of X" (w)

and also,
parts of X,A(u) (Eqgs

X (w) = Xpg-w) = 1%, {w))* (1.66)
BA A AB | Ot
a i PEr‘turbZ:ir: ‘l"t;t;o c;lculate the energy produced In a system by the exte
\ ’ i l R reention 1 . This energy ls of course always positive and ral
X" (w) = - Xpgl-0) = | " ()] (1.6 ption in the system. But dis e and due to
BA AB ) | reason and in ord _ But dissipative effects are non-linear. F
) ' In this section tha‘:rﬂ:: g:::er:le [fiterference terms, it will be n;.‘a-ur::d‘hls
' urbing potential
— " Additional symmetry properties can be found by time reversal. Let ! : P {8 a sum of terms:
@ be this transformation. The Hamiltonian His, in general, invariant will
however, if a magnetic tield B ls applied to the . ¥t} = = zal(l) A (1.76)
. - ;

respect to time reversal;
system, then, the time reversal operation changes E into - B. On the othe
hand, the operators A and B have often simple symmetry propertles under, ior the sake of simplicity the response f |
" A, will be sl e function corres di
! mply wetitany itl. Inlielsenbers repreag:tr;ugﬁ tc:v: :3:.

time reversal such as:

-1 -1
gA0 =€, A gBO = ¢ B. (1.68
A B : dH
’ thGy = (H, K] = [H, vl ] = - ) a () [
l () [H A (1.77)
and for any operator 0, the time reversal operator o satisfles also the EAH i J
relation ! operators in th
e L EHA Hak s Haes |s equation are assumed to be time-dependent. Thia
rro0et-Tr 0 (1,65
{ y d
1 bl . -
b ), Za‘(t)_dﬂ. A,l>, (1.78)

[N

K / ! b G
@ R ‘;‘WCAQ,M ; @1 (¥) A oa}-,c,%

T =




dt
i -
; 9
. -Za‘mfg (IA}(t).A'(I')D aj(t') dt! (1.79)
it e
Therefore by using definition {ll. 59), we obtain: f | A
5 M%‘“d‘é‘(g\a\ﬁn » b
- . N
d LM~
“ 3 CH2 -Z fnjlt)%' X, (t-t1) a(t!) dtt (1.80)
"= (X, N 1

“~__ the average flow of energy:
= [
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The static part {[Il,Aj]) vanishes for a system in thermal equilibrium,
Therefore from (1.57), we get:

t
S CH) =~ m“E aj(t)f([[l{, A, A'(t')] >t dt’

For reasons of simplicity, we assume-that the perturbatlon ls monochromay
(but real); therefore we put:

1 =l
ﬂl(t)'i[aje lw*a.'l'eh'“] {1.81)

Then, the preceding expression becomes:

d g : s
E(H)'-T”Z(ale M a:em> [n‘eMX"(u) - n:eh"‘.l" (-u)] (1,82)
it .

Now, we can drop the perlc;d.ic terms which are irrelevant here and calculay

™ '
"

g
Y Ty .
at (H)' = -TE[ara'x"(u) - a:a,Xu(-u)] N (1.83)
1]
Then, by using definition (1,28), we obtain finally:
..d.. i _1, L n
m (H)' "3 ) 83, v, (w) (1,84)
1]

This result shows that x,'; {w) can really be identifled with the dissipative
part of X, (w). g v g ’

. TV I X '('ﬁ\\'f“‘”
1.7. A Kubo formula ' '

Another formal expression of the response function has been glven by
Kubo [4]. In order to derive it, we write X, (t) In the following form which

.
Ve

X)I')ﬂ" ‘.\.\

LINEAR RESPONSE 337

results from the cyclical invariance of the trace of a product of operators;
In doing so we start from Eq.(1.60):

o(t) -8l
Xt Tz T [e . A]B(t) (1.85)
Now, we use the following Identity:
g AH
(o™, A1 -fe S fie dk (1.86)

0

which can be easlly proved by multiplying both sides by exp(fH) and’

differentiating. Thus,

BN

)
(e Al = mfe'”“,i(-mn da (1.87)
) 0

Finally, by introducing this expression In Eq.(1.85) we obtain Kubo's
formula:

[}
X, (1) * e{t)f(fut-m)am) dx
0

= - B(t) f(m-mn B(t)) dA {1.88)

0

1.8. Fluctuation dissipation theorems
et .

The natural fluctuations occurring ln a system at egulklbrium are
related to the dissipation effects resulting from an Interaction of the system
Of course, this connectlon proves to be very m-

with external forces.
portant and, though it has been clarifled only rather recently [5], it has
Nyquist

been recognized and used a long time ago (Elnsteln relatlon,

theorem [6]) in special cases.
The time-dependent fluctuation function Fy

anti-commutator:

Alt) 18 defined by the

Fa(t-t1) = 5 <LBL) + CBY)L (A1) - CADI (1.89)

Our alm 18 to establish a relation between the F‘ouri'er transform &,(w) of
Fpa(t) and the dissipative part of the susceptibllity Ygalw).

‘e

oppw) 'f

Kalt) ™ (1,80)




S
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For this purpose, we lntroduce the functlon SgAt) and ita Fourier trana-
form E"(u):

SyAt) = <(B(t) = {BY) (A-CAD)D = (B - B} (A(-1) - <A (1.91)
B = [ sn e M a (1.92)
By using these definitlons, we see iImmedlately that:
X2, (1) = (20) [S,,(t) - Syg-t)] (1.93)
Fyy(t) = 3 1S,08) + S(-1)] (1.94)
But on the other hand:
@ g 1=
¢A(-t)B>s 27 Tr (e"“a W aAe " B)
' =zlTr (e-m e;; H“-M)B e-HiH“'M)A)
= (B(t-1nB) AD (1.85)
Connequeﬁtly we obtain
Syl -t) = Sy t-1nB) {1,896)
and, therefore, we have:
X%, (1) = (20) [5,(0) - §,(t-1nA)] (1.97)
Fya(t) = 5 [Sy4t) +qu(t ing)] (1.98)

Let us now take the Fourier transforms of these expresslons. If we
assume that

n (aw -<A>) (B-<n>)> -0

for t —»m

2) ((A(t) - <A>)(B- <B>)) is analytic in the domain 0 < Im t<fh

¢
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we can write:

= +=
lwt kit
f e S“(-t)dt sfe S“(t-lhﬁ)dt
w -Bhw
e _fe S“(Udt e E“(u} (1,99)
Therefore, we obtain In this case:
X0+ (28) (10 ) £
aalw e ) m""') (1.100)
1 - Bl
o“(uj 2 (1+e ) E“(w) (1,101)
Thus, we are led to the fluctuation dlssipauon theorem
= -1 - )
(X:A(u) = h 7 th (Bhe/2) & fw) (1.102)

1.9, Moments and sum rules

The corresponding classlcal formula i3, of course, obtained by passing
to the limit fi = 0; In this way we obtnln

n 1
XgalWw) = 5 Bw &, (w) (1,103)

Note that, If A=B, Xg,(u) and ¢ Jw) are real,
As an Interesting applicatlon of the preceding theorem, we have also:

L] ‘-
' -t G
hfcoth (152—”)e o ’::(u)du-fe T oWl dun 2z Fy(t-t)  (1.104)
which leads to the sum rule (fort=t'):
il
hw -1 2
f colh(Lz—) X{(w) dw = 22 h ((A-(A)) > (1.105)
or for a classical system
ELd
(1.106)

S S een (a-car)y

This equation can be generalized by taking derivatives of Eq,(1,104) with
respect to t and t, @Js. we get (when the equation has a meaning): %
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- 2
f w™" coth (L;E) Xpw) du = 27h (A" (1.107)

where A" (t) s the n order time derivative of A(t) (t ls arbitrary). In
the classical limit, we have also:

; f“zﬂ.l X:A(“, dw= 18 <(A‘°) “)>2>

We note that If the potentials acting on the particles of the system
are regular, all the moments of X7 {w) exist since the mean values appearing
on the right-hand side of (1,107) are finite, But, of course, this is not

true In the case of Coulomb interactions.

(1.108)

Additional sum rules

1.10, Classical case.

In the classical case, useful relations are obtained also between the
reactive part of the susceptibility and the fluctuations by using the Kramers-

j Kronig relation (1.46):
' 1 7 X:A(u')
xAA (w) = o f T dw'

L - ,

(1.109)

C Thus, by putting w=0 in this equation and by taking into accokmt the
{ ' symmetry properties of X;,(w) and Xj,(-w) we deduce from Eq.(1.106):

4=

! 5
*y X, (02X, (0) = & [ uxr w)da = BCA D - AN (1. 110)

[ -

On the other hand, by examining the behaviour of xfm (w) for large values
of w, we obtain also an Interesting relation (see Eq.(1.108) for n=1):

I} guaidawda 108 . -

-éfW"" r € grofie falo f2 :
ke T coare im0t () 7 -2 [uxfera < - BKANN

& feo Zrgies = e foves

(1.111)

If this equation has a meaning, we can infer from the convergence of the
- integral that lim w2Xj,(w) = 0, Thus, we get finally:
: PR, ;
Lo WX = 1 By « SAAN®Y (1112
wx\_,_. o Um w” X, (v) m w X, (w) ) .112)
0 Wow W=e ;
!‘ 1.11, Spectral representations and energy levels of the unperturbed

system

The meaning of all the preceding relations may become more evident
by using explicit representations in terma of the elgenstates and elgen-
energies of the system, Thus we have immediately (see Eq.(1,81)):

&
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. 8B, I(E~£ VA
s =2 (Yo T e calalmd <mlBlny -

-BE -BE
‘Zﬂ “(n]A[n)Ze ‘“(m|B|m)) (1.113)
n m
Hence, we get the Fourier transform:
z 7n
= [
Lu) = hZ 1Z g §(hw-(E_-E) <{n[A|m)>{m|B[n) (1.114)

mn

and by using Eqs (1.100) and (1, 101) we obtain: V T
it Tl

- -8 % —_— .

X;A(w) . % ZIZ (e . e *Em ) btﬁu-(Em-E“))(nIAlm) <{m|B|n) (L. 115)’;: t?n

mn
=/

8, () '2' z" Z(e"‘ua'“‘“ ) §(hw- (E,-E,) <n|A|mD> {m|B[nd> " (1.116)
mn

In the same way, It 18 easy to find an explicit representation for Xg(w),
since we have according to Eqe (1.63) and (1.97):

X, (t) = 218(t) Xy, (t)

: -8 -8 HE~E_)/h
= ih a(t) z(e 5. e E'")e 2 ¢n|A|md ¢m|B|n) (1,117)
; mao

Therefore we obtain the félluwlng expression:

e, -t <n|A|m)><{m|B|n)
-1 £
X & = -
plW) * -2 Z(" " o~ (E_ - E )+10 W e
mn Checl, "N'.u'a E‘.-E.._
which shows the relationship between the excitations of a system and the
regponse function, ‘

1,12, Denslity fluctuations, f sum rule and longitudinal sum rule

The general theory 1s frequently applied to the study of large systems
consisting of a set of identical particles of maas m Interacting between
each other and with the medium in which they move. In this case, the
Hamiltonlan can be written In the form:

N
HE‘;Zi&f +U(G... 1)

=]

(1.118)
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where U(ry...ry) l8 an operator which depends on the medium and on the
positions ry...ry of the particles under consideration; on the other hand,
B, 1s the momentum of the s particle. The form of this Hamlltonlan

implles an Interesting relation, the f sum-rule, which plays an {mportant

role in the theory of conductlvity and will be derived now,
First, we Introduce the density operator n{?} and the currentoperator J(7:

n{7} = Za(?—-?_) (1.120)
[]
= z(ﬁ‘ 6(F-T) +6(F-T)B) (1.121)
8 ]
and their Fourler transforms: ..
lket 9
n(K) -Za ! (1.122)
. L B
(k)-il;n-Z(,e ‘+e 'B) (1.123)
[ ]
which are related by:
[H, n(k)] = nk.J(k) (1.124)

a relation which {mplies the conservation of particles; in fact, if we
define:

lﬁl— .l —Hl
nKt)=e "n()e " (1.125)
5 [ S ‘
Tkt)=e "jkle ™ (1.126)
these time-dependent operators satisfy the conservation equation:
d - i{ - & - -
Rk t) = & (H,n(k, )] (k3R 1) (1.127)
Now, we note that: i
F@, D) « - T nk (1.128)
With the help of Eq.(1.124), we deduce:
[(H, n(k)], n(-K)] = - (1.129)
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For a system at temperature T the mean value of the left-hand side can be
expressed in terms of the elgenstates |n> of H:

AR w-R1> = 2) 6 HE,-E,) ela ()] m) <m|n(-F >
im

+ (|n(-k) | md> <m|n(®) | £>) (1.130)

In the right-hand slde of this expression, both terma are even in k: there-
fore, by comparing this expresslon with Eq.(1.128), we obtain:

g™ Ze
im

It {8 customary to define the oscillator strength of the level |n> by:

E'tEm-E,)I<t|ntk1|m>lz-;;,“hzk’ o (1.131)

- 2m 'B!‘ 2
LR T) - mZu (E, - E,)|<t| k)| m} | (1.132)
m
and thus, we get the { sum rule:
(1,133)

Zt,ﬂ?. T) =1

Thie relation can be expressed in a slightly different form which la
also very useful. In agreement with definition (1,62), we put:

X7 (FR et = (207 Kl (E Y, 56D (1134)
a’'s - X
where
| Ht - Ht
T{r,ﬂ L) T]Tﬂ e ¥ (1.1386)
and its Fourler transform:
T s fReaeT) wit-r) o
X) (kW) -fd re fdte X\ j, (rer',t-t1)
a’s a’p L
(1.138)

- (2p™ [ate™ ) Clalk, 0, (1% 01>

(2 = volume of the sample),
Our alm is to find a sum rule which s junt another verslon of the { sum rule

for the susceptibility X| j’(k. w).
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In a homogeneous medium, we can separate I (k w) Into a longitu-

dinal and a transversal part; by definition we hnve

L] . kaky " ( - kukﬂ) "
xln,a (k, ) k“ Xy + (Gag = 7 )X (1.137)
Therefore:
O T 0, k3K 01D (1.138)

x;'j" (k,w) = gznkgn)"fd: e

This gypregsion can be transformed by using the continuity equation (1,127):

xl':m, W) = uznk’n)“fcn TR, 1), Bl-K, 1) (1.139)
.- u(zhk’n)"f dt CIRTE 1), n(-Kt0]> ‘ (1.140)
Thus, we derive the longitudinal sum rule: |
-2-‘; fdu w!? xl":'(k', w) = - (20 CUR-T(R), n-R)D  (1.141)
which by using Eq.(1.128) becomeb:
(1.142)

Eed
L e _n_
Zr fduu X”(}?,u)izln

(where n =N/ i8 the density of particles),
Or by application of the Kramers-Kronig relation (1 46) and of the

symmetry conditions (1,66) and (1.67):

L ,= . 'l. - . n
X! (%, 0) = X}/ (, 0) = 2 (1.143)
2. LINEAR RESPONSE TO A DYNAMICAL DISTURBANCE. EXAMPLES
AND APPLICATIONS ‘

2.1, Classical osclllator

As a simple illustration of the theory, we consider now the case of
a simple classical osclllator driven by an external force, The coordinate
x(t) of the osclllating mass m satisfies the equation:

mE(t) + v &(t) +mu:x(t) = (1) (2.1)

&
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where m ls the mass, mug the spring constant, v a frictlon coefficient and
f(t) an external force which can be regarded as resulting from a perturbing

potential:

v{t} = -xf(t) {:2.:2)

The preceding equation and the usual assumptlon x(-e«) = 0 determines
the variatione of x(t) completely:

t
x(t) + [ xg(t-t) ey av (2.3)
Now, we get: - fa
) = 5 fe'““'q>(u} du (2.4)
x(t) = 5= f e (w) dw (2.5)
and thus the preceding equation can be transformed into:
E(w) = X (wp(w) (2.8)
But Eq.(2.1) gives:
(mwg = w?) - tyw) §(w) = 9(w) (2.7)
and therefore, we have:
X (0) = =5 A (2.8)
m(”o W) - lyw
This function has two poles; two regimes are possible:
a) v < 2m wy (weakly damped oscillator).
then the roots are given by: J
wetw - lw, Ww>0 w>0 (2'9).
by, 3wy

b) ¥ > 2m Wy (strongly damped osaclillator);

then )"{J{! )}

u--l(uliuz) u1>u,‘>0

In any case, the roots have negative imaginary parts and therefore, In
agreement with the causality requirements X,(w) is analytic in the half
plane Im w > 0,

~

Aoy r
g

(2.10) "'l

210 P FISin
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The Kronig-Kramers relation (see Eq.(1.45)):

4+
1 (w'
2 X w) s f%?—;-) du! ) (2.11)
L}
turna out to be obvious because we can write:
P 1 ( 1 O 2
‘]” e/&ud{p w-w! 2 \w-w+i0  w-w-i0 s ? (2.12)
. v
&’I_',Q’? eO{"‘ f on the right-hand side of Eq.(2.11), close the contour upwards and calcu- 9
‘ . T late the residue at the pole w'= w +10; this resldue is of courae X(w). Linbe !
; be fres e The real and Imaginary parta of X,(w) are given by:
_fniZiM{(ﬁ% m(? - )
g 0
7l sds’ Xal) * (2.13)
e — mi(wy-w) +Yw
e (2.14)

X2 (w) =
a mztuo-u) )

and we verify Immediately the symmetry conditions of sectlon 1.4. The

shapes of the curves corresponding to these functlons are very charac-
teristic for small values of v; they are represented in Fig. 2.

"

! X' {w) X

w W
o V

X' (w) for small values of yo

i FIG, 2a. FIG.2b, X" (w) forsmall values ol y,

The work W(t) done by the external force {(t) is given by:

X -
L0 2 20) 1) = [ 1) Xgtee) 1iv) v
)

4o
5 [ T aegenar e (@2.15)

AL cl?f ‘f=f$(+/

Thus, {f we put:

f(t) -%(re""" s e (2. 16)

&
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dW(t) | w o . (2,17) :
WY o 2 o) ot |

in agreement with the general results of section 1.5: this result reminds
usg that X}, (w) is the absorptive part and Xy (w) the reactive part of the
susceptibility, i
Let us now examine how the fluctuation dissipation theorem applies to !
this case, Our system is classical but the friction v 18 just a phenomen- : E
ological coefficient and no real Hamliltonian corresponds to the equation of
motlon (2.1), The oscillating mass may however be regarded, for example,
as a ball moving in a viscous medium, In this case, there exists a i
Hamiltonian for the whole system conalsting of the ball and of the medium :
in which it oscillates, and v describes the response of the medium. Then
the fluctuatlon dissipation theorem should be valld for the whole system, K
Equations (1.110) and (1.112) are written In this case:

)

I
we get: [ Y

i

i

i

i
X, (0) = B = ~a(2.18)

Jim wix (W) = - BEEA)D e - .q’;j (2.19)

But, on the other hand, from (2.8), we get:

(0 = s m gl e < (2.20) i

fil

From the comparison of these expreassions, we get {Inally: il
) i

(2.21) I

% m “3 (xz(t)) --;' m (iztt))- %KT

e

This {8 exactly Boltzmann's equipartition theorem, and this result appears
rather remarkable If we consider the phenomenological nature of 7.
We note also that all these results would remain unchanged if the

friction forces were frequency-dependent and represented by a coefficlent r
7 (w) provided that: ?[-’

i

7(0) o0  Um o’y i) eo .22 ],

Wesw H

4

2.2, Conductlivity tensor i!’
The behaviour of the system consisting of a sample of matter inter- ’I;
acting with an electromagnetic fleld is determined by two kinds of equationa, j'
f

® Y
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Flrstly, the flelds satlsfy two groups of Maxwell equations which, in the
reciprocal space and with proper units, can be written:

(H(’E, w) 48 the electric field, b(k,w) I8 the magnetic inductjon)

kKX R(K,w) - wb(k,w) = 0 . (2.23)
1) o/ ‘.
k-b(kw =0 b (2.24)
" RX B(E, ) + wR(K, ) = 17K, w) (2.25)
l” - - - -
k-h(k,w) = plk,w) (2,26)

where p (K, w) = en( K, w).
Secondly, there are the "material equations' which give the current and

the density of charge appearing in the material as a result of its inter-
action with the electromagnetic field, Thus J'(%,w) and p(K,w) are functions
of F(K, w) and B(K,w). However, p(K,w) ls not Independent of J(E,w) since
we have the continuity relation:

wolkw - k-FJ(Kw =0 (2.27)

On the other hand, B(K,w) can be expressed In terms of Ti(K, w) by means of
Eq.(2.23) which implies also Eq.(2.24). Thus, the response of the
material to an electromagnetic stimulation is completely determined by the
conductivity which relates J(k, w) to h(k,w). In an homogeneous medium (and
a crystal, for example, can be considered homogeneous for wave lengths
which are long compared with the Interatomic distances), we can write:

(k) = Za“(i?.u) hy(k, w) (2.28)
]

where cr“,(-l:, w) I8 the conductivity tensor,
In order to emphasize this point, we can assume, for example, that
the medium is {sotroplc and expand ou(K,w); for emall values of K and w

we {ind in this way:

= oL . -1 o8
etk w) = p" 8,y lwaré,, + LBw (kky - k L)

Cw Zt-”kr +i(a0) 8, (2.29)
T

where p i8 the resistivity, & the electric polarizability (with Aug-1
where ¢ I8 the dlelectric constant), & a magnetic constant (with # = 1 - "}
where u 18 the magnetic permeabllity), & a constant of rotatory power
(with €,,, completely antisymmetric with respect to the indices and

€xyz” 1), and A the London constant (if the system [s a superconductor).
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Thus, we see how all the simple electromagnetic properties of an lsotroplc

medium are related to the form of g ¥k, w).

The conductlvity tensor o,,(K, w) can be expressed In a formal way by
means of a Kubo formula which often serves as a starting point for further
investigations. The complete Hamlltonian can be written:

N N
H = 5= ) (B - 2R G000 +eZV{E,n +U(R... 1) (2.30)

2m
"1 (L)

We note now that it is always possible to choose a gauge such that:

Vi{rtl =0 (2.31)

On the other hand, since we are interested in the linear response only,
we may write:

H{t} = H + v{t} (2.32)

where H {8 the unperturbed Hamiltonian and v {t} the perturbation:

vith « - - ZIi-:-E{E.ﬂ +A(5, 0B = -§fm-x:;.u 7 (2.33)
]

where j{r} s given by (1.121), On the other hand, the total current is
given by:

- - - 2 - - -
J{r} = e jir} - fn-c- n{r} Alr t} (2.34)

By assuming that lhe'syslem is homogeneous, we may write, in first
approximation:

t
e? 2y caiice 2
J,E = 'c—fdt' ‘fd T Xjﬂja(r-r'.t-t') Ay, v} - %:‘HA (%, t} (2.35)
Now, we can use the relation:
]
R{%,t) = - % :—t Ar,tt A(rt) =- c[ﬁ{i’.m dt! (2.36)
or {ts Fourler transform:

Ak, w) = 5 Rk W) (2,37

By comparing Eqs (2,28) and (2, 33), we get:

e2
fw-0

(k, w+li0) - —:—‘ 8, (2.38)

cr“{k'.u) . A

IX’u

e
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In particular, If we dencte the longitudinal part of any vector §(K) by the
symbol gL (K) with: 5

F4R) = R(R. g(R) /K’ (2. 39)
we can .write:
TYK-w) = ot (K, w) B Tk, w) (2.40)
with
(2.41)

L e [.L nl
g (K w) = ] [X” (K, w +10) - -r;]

where x:'j (k,w) L5 defined as X} (K, w) in Eq.(1.137).

Then the sum rule (1.143) expresses the fact that, for a normal
system, the d.c, conductlvity (w=0, K=0)is finite. However, it must be
_qoted that, for free electrona, although the f sum rule remains valid for
k # 0, the d.c. conductlvity {s Infinite. This anomaly can be related to the
fact that in this case:

Lo -
}{_{T‘I’ )L“[k.u) +x”(0-”) o (2,42)

Another simple expression of the longitudinal conductivity can be
obtalned by using the Kubo formula of section 1.7. From Eqs (2.35) and
(2.36), we deduce after partial lntlegrauon with respect to t':

. e’fdv fdh(JLﬁ',t'-ih).} j"(?,t})'ﬁ"{i-".t'}

band

t I !
FHEY - e’fdt'fd’r'fcu- x"'l(F-F'.t-t-)F"{F'.t'} (2.43)
by using Eq.(2.36) and the { sum rule (see Eq.(1,142)7
t
fx';,(?-':'-'.t-t') = s (r-7) (2.44)
Or, from Eq.(1.88): H
|
TUE e = e’ fdu-fda GUE, - ME > RN, ) j
; |
(2.45) i

@
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which glves:

- 8 1
ol (k, w) = e“fe”‘""" d’rfdte“‘fdx e, -imad R D
0 0

- 8
. n“egfdz e‘“"fda M=K, -ima) HR D (2. 46)
0 0

2.3. Einstein relation
The well known Elnstein relation which connects the mobility of a set
of partlcles with thelr diffuslon constant D:

u * eD/KT (2.47)

ie a simple consequence of Eq.(2.45), in the classlcal limit (h=0). In
fact, if we denote by v, the velocity of the g particle along an arbitrary

;xis, we may write:

-1 L -1 r
u=(en) @ (0,0) =N eB [ dt ) <v(0)v(t)
J 2: s f

N eﬂfdt v 0) v(t)) (2.48)
0

where v(t) {8 the velocity of nr)y p'nrtlcla (the mean density 1s n=N/fland

B=1/KT).
On the other hand: (for &> 1)

- ! v ¥ ¥
| [ ‘
| uf <0 W = 5 ;[ at of at GV v(t))

= "21?- Kixtg) - x(0)*> (2.49)

But a paiﬂcle. which is at the origin at t = 0 has a probabllity p(¥,t) of
being at T at time t which 18 given by:

L
p(%,t) = (4xDt) T ¢ *** (2.50)
Therefore:
2
((x(t) - x(N) > -fx’p(?.u d’r = 2Dt {2.51)

Thus, from Eqs (2.48), (2.49) and (2.51), we can deduce Eq.(2.47).
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FIG.3. A clrcuit with & reslstance R and & block box of [ndependence Z(w).
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2.4, Nyquist theorem

The thermal nolse of a resistance |7) can be calculated by direct
application of the fluctuation dissipation theorem. Thus, let us conslder a
resistance connected to a black box of impedance Z(w) (see Fig.3) which
will be assumed to be purely reactive (Z{w) = 1Z® (v)) with Z"(w) real.

The conductivity of the loop consisting of the resistance and of the black
box will be given by:

ofw) = 1 [ (6) = X,,(0)] (2.52)

This formula is completely equivalent to Eq.(2.41) and can be derived in
the same way. Here J(w) l8 the Fourler transform of the total current:

+=

Jw) = | e™'J{t} dt

and X”(u) is the Fourler transform of:

Xp(tetr) = 07T, IV @ (t-t) (2.59)
On the other hand, by definition, we have:
o1, R-1z"() '
o(w) R+Z(0) H2+IZ'(U)]2 (2.54)
Therefore, by comparing Eqs (2.52) and (2.54), we get (X} (0)=0);
(2.55)

1w R
X' (W) r—m——
o)t T Iz
We can now apply the fluctuation disslpation theorem Eq.(1.102) or, more
convenliently, its classical form given by Eq. (1.103) because in all cases of
practical interest fhw <« 1.
Thus, we get:

i (2. 56)

-1
@”(U) 28 HF o+ lz"u”z
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On the other hand, according to Eqs (1.88) and (1.80), we have:

AW I = fdt e [ar e™F ¢latt, 1D

. 2fdtfdv e YR ()

5 47 §(w-w') ¢”(u)

(2.57)

J{w) can be considered here to be classical (i.e,,a c-number) and there-
fore:

QI I-w) = 2x6(u-u') 9,(w) (2. 58)

By comparlng with Eq.(2.56), we finally obtain the Nyquist theorem:

(W) I(-w)D = 47 KT 6 (w-w') (2,59)'

_ R
R%*+ (2" (w)]?

The meaning of this theorem can be better understood If we aimulate the
effect of the therrnal noise which produces current fluctuations in the
black box, For this purpose, we may add:

a) either a current generator (current J;) of Infinite impedance in
parallel with the resistance R(Fig. 4a). '

b) or a voltage generator (e, m.f, E,) in series with the realstance
(Fig.4b).

It is trivial to show that J; or Eg must be given by:

CTplw) Jy(-w")) = 42 KT R 6 (w-w') (2.60)

CE,(w) Eo(-u')) = 4x KTR é(w-w') (2.61)

These results Indicate clearly that the thermal noise comes only from the
resistance and does not depend on the purely reactive black box at all,

PIG.4a, Current generator (n parallel with a resistancs,

it FIG.4b. Voltage generatar In serles with the reslstancs,

|
.‘ R
|
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