CHAPTER 8

ELECTROMAGNETIC
PROPERTIES OF
SUPER CONDUCTORS

Among the many surprising properties of superconductors, their
response to externally applied electric and magnetic fields is
the most striking. In 1911, while measuring the electrical re-
sistivity of metals at liquid helium temperature, Kamerlingh
Onnes? discovered that certain metals passed into a radically
new phase in which the voltage drop across the metallic specimen
vanished even though a finite current was flowing through it.
He characterized the new state as one of infinite electrical con-
ductivity or “‘superconductivity.” Equally striking was Meissner
and Ochenfeld’s® discovery that under ideal conditions a super-
conductor is a perfect diamagnet, that is, the magnetic field
strength B vanishes within the bulk of the superconductor.

8-1 LONDON RIGIDITY

In Chapter 1 we gave a qualitative discussion of the origin
of these unique properties. Here we take a more formal approach
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and show how these effects follow from microscopic considerations.
While the mathematical aspects of the discussion become involved
at points, the underlying physics which accounts for the phe-
nomena was clearly stated by London® in 1935. He suggested
that the wave function ¥, of the “superfluid ’ electrons is “rigid”
or “stiff” with respect to perturbations due to the presence of a
weak magnetic field. Then, as in the problem of diamagnetism
of atoms, the vector potential leads to a finite-current density

() = (—nev) = —-:fnf <p + —e?> _ "y (8-1)

since {(p) = 0, owing to the rigidity of ¥,. This induced current
then gives rise to a magnetic field which screens out the external
field and leads to perfect diamagnetism in a large system.

The microscopic implications of London’s interpretation of
the Meissner effect can be seen in the following manner. Since
Maxwell’s equations ensure that the magnetic field is necessarily
a transverse field (V+B = 0), the magnetic perturbation H’
only affects the transverse excitations of the system. If ¥ is to
be essentially unaffected by this (weak) perturbation, the sum of
the squares of the first-order perturbation series amplitudes

: (FolH' |
2l = 21 E, = B

2
(8-2)

must be vanishingly small. Here ¥, is the state with transverse
excitation « present. Presumably, this anomalously small value
of the sum will occur if the matrix elements (¥,|H’'|¥,> tend to
zero while the excitation energies £, — E; remain finite. Clearly,
this will not be the situation for magnetic fields which vary
rapidly in space. Such fields create excitations involving elec-
tronic states far from the Fermi surface. These states are
presumably unaffected by superconducting correlations and there-
fore lead to finite matrix elements as in the normal state. Fortu-
nately, in establishing the Meissner effect, one only requires the
response of the system to magnetic fields which vary slowly in
space. In this limit only electronic states near the Fermi surface
enter, and there is no reason to expect the matrix elements not to
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vanish in this case. Therefore, London’s interpretation of the
Meissner effect leads one to suspect that (1) the matrix elements
for creating transverse excitations from the superfluid by a
magnetic field tend to zero for fields which vary slowly in space;
(2) there is an energy gap in the transverse excitation spectrum
of the superfluid. As we shall see below, these conditions are
satisfied by the BCS theory. It is possible, however, that the
matrix elements and the energy denominators both vanish in the
long wavelength limit, in such a way as to give a finite sum. If
this sum does not exactly cancel the diamagnetic current in this
limit, a Meissner effect is still obtained, as in superconductors
with [ # 0 pairing!”® and ‘‘gapless” superconductors.’’ The
essential difference between the normal and superconducting
states in metals is that the paramagnetic and diamagnetic currents
do not exactly cancel in the long wavelength limit in the latter.

On the basis of these arguments one might wonder why an
insulator, which has as an energy gap for creating transverse
electronic excitations, is not also a perfect diamagnet. The point
here is that the energy gap arises from the one-body ecrystal
potential in this case, rather than the effective electron-electron
interaction. One can derive a sum rule which shows that for
insulators the wave function shifts just enough to make {p) cancel
the diamagnetic term eA/c in (8-1) except for a weak diamagnetism,
as in normal metals.

If one can explain the Meissner effect, the ‘‘infinite con-
ductivity " observed by Onnes can also be explained. This
follows because one can show the currents flowing in his con-
figuration (i.e., a superconducting section in an otherwise normal
circuit) were diamagnetic in the superconducting section.! That
is, the currents in the superconductor were due to electrons
described by a wave function which was essentially the same as
in the absence of the current. The finite current then arose
self-consistently from the magnetic field which was generated
.by the current itself.

In addition to the Meissner effect, one must understand the
stability of persistent currents in a multiply connected body,
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for example, a superconducting ring. While the Meissner effect
plays a role in the details of the phenomenon, the currents are not
primarily diamagnetic in origin in this case. On the contrary,
the wave function for the current-carrving state differs greatly
from that in the absence of currents, in contrast with the situation
described above. However, the effect is again due to a “rigidity "
of the wave function with respect to all fluctuations which ocecur
with a finite thermodynamic probability. That is, essentially all
fluctuations -lead to states of higher free energy and therefore
regress without leading to decay of the current.

8-2 WEAK-FIELD RESPONSE

In the beginning of Chapter 2 we argued that transverse
electromagnetic fields need not be included directly in calculating
the detailed pairing interactions which bring about superconduc-
tivity. Their effect can be taken into account in terms of a
space- and time-dependent average field which is calculated self-
consistently from the external field and the currents flowing in the
material. While the externally applied magnetic field generally
represents a large perturbation on the system, the induced field
arising from the supercurrents cancels the external field over most
of the material, as we know from the Meissner effect. Therefore,
the net field acts only very near the surface and can often be
treated as a weak perturbation on the system as a whole. Thus,
we shall formally treat the total transverse electromagnetic field
as an externally applied field and solve for self-consistency as a
separate problem.

As we have seen above, the Coulomb potential plays an es-
sential role in the pairing theory. It cannot be treated by the
self-consistent field scheme we use for the transverse field and
therefore we include the total Coulomb interaction in the zero-
order Hamiltonian.

We begin by considering a simply connected bulk super-
conductor of unit volume in the presence of a weak externally
applied electromagnetic field described by the vector and scalar
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potentials A(r,{) and ¢(r,t), respectively. As usual, we use
periodic boundary conditions. For convenience, we write

LA w=i=123) _
a0 =0 o (&)

wherex = (r,!). To first orderin 4, the coupling of the electrons
to the electromagnetic field is

l .
- iju”(x)Au(:c) d3r
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where we use the metric (1, 1, 1, —1) in p-sums for p = 1, 2, 3,
and 0, respectively. We call H? the paramagnetic coupling.
The paramagnetic four-current is defined by

JP@) = =5 S (@) V() — (Vi (@) ()}
JuP(@) = (r=1=123) (85)
pe@) = =€ 3t (@Wh(@) = —ep(®)  (u = 0)

I

the (1, 2, 3) components giving the electronic current density
operator in the absence of A and the last component being the
electronic charge density operator. The physical current density
£,(x) in the presence of A4 is the sum

Jul®@) = J,P(@) + j,4 () (8-6)
where the diamagnetic current density j¢ is given by

Ju8(: me (8-7)
0 (n=0)
The full coupling of the electrons to the perturbing electromagnetic
field is then

() = {i pe(®) A () (k=1=1213)

H' = H? + H¢

where the diamagnetic coupling is defined by

3
Hi=—— f pe(@) D, 4,2(x) dOr (8-8)
1=1
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Therefore, the total system Hamiltonian is
A =H+ H'
If we work in an interaction representation where H' is
taken to be the perturbation, and assume that A, — 0Oast — — oo,

the ground state of the system in the presence of A evolves in
time according to

|®(t)> = T exp [~ifl H'(t)) (lt’]|0> = U(t, — 0)[0) (8-9)

Here |0) is the ground state of H and all quantities are expressed
in the interaction representation. Therefore, the expectation
value of the current density in the state |P(t)) is given by

(@) = LDR)|ju(r, )| P(t)) = O|U* (¢, — 0)ju(r,)U(t, — 0)|0>
(8-10)

Since we are interested in the terms of J, which are first order in
A, we have

Ju(@) = — <0l @] 00A4,@)1 - 8,.0]
- i olfire 0, f meyar|oy (e

The zeroth-order terms in J, vanish except for the average
electronic-charge density (jo(x)), which does not interest us here.
By using the expressions (8-4) and (8-7) we find that the linear
response J, and the externally applied potential 4, are related
by a nonlocal kernel K, ,:

J,(z) = ‘%,Z f]\'uv(r, e, t)A (0, ) dY dt (8-12)

where the spatial integral runs over the unit volume and the time
integral extends from — o to oo. The electromagnetic response
kernel K, is given by

Ko ) = =7 ColL5,7 (@), 5200 - )

47e

<0

S (0]p(@)]|0) 8w — &) 8,,[1 = B..0) (8-130)
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where the theta function is defined by

1 (t>t)
—_ Y = -1
ot — t') {0 « < ) (8-13b)

If the system is translationally invariant, K,, depends only
on the difference 2 — 2’ = (r — ', ¢t — t’). In this case it is
convenient to work with the spatial Fourier transform of K,
defined by

K, (q,t—-1t)= fKuv(x;x’)e"‘“"""’dsr d3r’

—%i <O0|(5,7(a, £), 4,"(—q, £)]|0>6(t — ¢)

4mne® ,
+t a2 8(t — t') 8,,(1 — 8,,0) (8-14)

I

where n is the number of electrons per unit volume. Since the
diamagnetic (second) term in (8-14) is known explicitly, we
concentrate on the paramagnetic (first) term in this expression,
and define

Ruv(ql T) = __.L‘<O|jup(q, T)x jvp(_q! 0)]|0>0(T) (8'15)

If the ground-state wave function were “‘rigid” with respect to
all perturbations (rather than only those which lead to transverse
excitations) R,, would be identically zero and (8-12) would reduce
to London’s equation

Jiz) = J:n—ez A(z) (r=1=123) (8-16)

This relation is clearly not gauge-invariant since the predicted
current depends upon the choice of gauge. In London’s equation,
only the transverse part of A is to be used! and therefore J is
properly gauge-invariant. Since the longitudinal part of A
couples to longitudinal excitations, the wave function is not
“rigid”” with respect to this type of perturbation and the para-
magnetic term does not vanish in this case. In fact, if A is purely

a gauge potential, the paramagnetic and diamagnetic terms -

exactly cancel as required by gauge invariance. In carrying out
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an approximate evaluation of K,,, one may be able to accurately
treat only excitations which enter the transverse response of the
system. In this case the longitudinal part of the paramagnetic and
diamagnetic currents will not cancel in general and the resultant
current will not be manifestly gauge invariant. Nevertheless, if
one recognizes the difficulty and uses only that part of K, which
is accurately calculated, correct physical predictions would be
obtained for transverse fields. This is exactly the situation we
shall meet when K, is evaluated within the pairing (BCS)
approximation. The inclusion of longitudinal collective .modes
or superfluid flow then restores galxge invariance by correcting the
longitudinal part of the paramagnetic term.

In our discussion thus far, we have always dealt with time-
ordered products of operators rather than retarded commu-
tators of operators as appear in (8-15). It is the former that we
can more readily handle by the Green’s function scheme. Fortu-
nately, R,, can be expressed in terms of a time-ordered product
of current densities if one works with the time Fourier transforms
of these quantities. To see this we note that R,,(g, ¢,) defined by

® d
Rt ) = [ Rl gole= ot e (8-17)
- @ s
can be expressed in the spectral form
I C,,(q, w)dw
R,.(q, q) = f_ To—w+i8 (8-18)

The spectral weight function C,, (q, w) is given by
Cunla, @) = 3 <Ol (@) n><nl3, (= )|0> 8(E, = By — w)

— > €03, (~ @) |[n)<{n|j,P(q)|0) 8(E, — Ey + w)

where (8-19)

H|n) = E,|n) (8-20)

This spectral representation can be checked by inserting the
complete set of intermediate states |n) between the operators
in (8-15) and comparing this result with the expression given by
combining (8-17) to (8-19).
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Consider the corresponding time-ordered product expression
P,(q, 7) = —i{0| T{j,”(q, 7)j,”(—q, 0)}|0) (8-21)

Its time Fourier transform, defined by

- @

. d
P,(q, 1) = f P,.(q, qo)e‘“’o'gq;f (8-22)
is given by the spectral representation

= C,(q, d
P,(q, 90) = f Ow(g, w)dw

8-23
_mqo—w+i5w ( )

as one can check by direct calculation. By comparing the spectral
forms (8-18) and (8-23) we see that in the case that C,,(q, w) is real,
the real parts of P,, and R,, are identical while the imaginary
parts differ by a minus sign for ¢, < 0; thus

Re Pu\-(q: %) = Re Ru\'(qy o) (8-24a)
Im Pu\'(q' qO) = Sgn ¢y Im Ru\-(qr QO) (8'24b)
More generally, the discontinuity of P,.(q,q,) across the-cut

determines C,, from which R,, can be obtained with the use of

Cuv
(8.18). Therefore, R,, is known once P,, is determined. (Since
the expression for /i, involves only the system in the absence of A,
the operators j, and j,» are identical in this case and we shall
often suppress the script p in the operator j,?.)

Summarizing the results obtained thus far, we find the
response of the system to a weak externally applied potential

4,(9) = [A(g), cp(g)] is given by
J0) = =1 3, K,l9)4,(q)

3
- ——%r [ZIKM(‘])A:(‘I) - Kuo(‘I)Ao(Q)] (8-25)

where ¢ = (q, go). The kernel K,, is given by combining the
(8-14

expressions ) and (8-15),
. 4 1
Kul) = 5 Rusl) + 33 80l = 8] (8-26)

the two terms giving rise to the paramagnetic and diamagnetic
currents, respectively. The quantity A 2 = mc?/4mne? is the
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square of the London penetration depth. The paramagnetic
kernel R,, is given in terms of the time-ordered quantity

Pul@) = [ (=i0|T(ilg, Vi~ g, OD0Det dr (827

by the relations (8-24).

8-3. THE MEISSNER-OCHSENFELD EFFECT

As Schafroth has shown,** the Meissner effect requires that the
transverse part of the kernel K, remain finite in the long wave-
length limit (q —0) for zero frequency (g, = 0). Now gauge
invariance and charge conservation require that

3
Z K,,=0 (gauge invariance) (8-28a)
i=1

and
z K, =0 (charge conservation) (8-28b)
1

for ¢, = 0. When these relations are combined with the rotational
invariance of the ground state |0), it follows that K,, is of the
form

Ko, 0) = [8., - q;—%’]Km (8-29)

The Meissner effect then requires that
K(g?) > 0 as qz2—>0 (8-30)

since the factor [§;, — ¢;¢;/q%] guarantees that K, is purely
transverse in this case.

The original BCS calculation of J, was carried out in the
transverse gauge, that is, q* A(q) = 0. In this gauge only the
transverse part of K is calculated, and one does not try to ensure
that the longitudinal part of K, vanishes, as required by (8-29).
It is, however, instructive to calculate the entire kernel within
the BCS approximation so that we can understand the role of
collective modes or superfluid flow in giving the correct result for
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the longitudinal part of K. To calculate the paramagnetic portion
of K we require

P(q, 7) = —i0| T{ji(g, 7)j,(—q, 0)}|0) (8-31)

Tlie current-density operator j(q) is given by the Fourier trans-
form of the expression (8-5) and one finds

. e
j@) = - (k n ‘—,})cm*cm.s (8-32)
m ks &

Therefore P,, becomes

- 2
Py(q,7) = "%k kz (k + g).(k, + %)’
% O] T{e,s * (T)C 4 q. s(T)Ck 4.5 T (0)Cis(0)}] 0> (8-33)

We could evaluate this expression within the pairing approxima-
tion by replacing the exact ground state by the BCS ground state
(2-33)

o> = I'T (e + udy*)[0) (8-34)

k

and expressing the c’s in terms of the quasi-particle operators
by the Bogoliubov-Valatin transformation (2-56). The time
dependence is then approximated by that of free quasi-particles

and the vacuum expectation value is evaluated in the standard
way.

An equivalent procedure, which is more easily generalized
beyond the pairing scheme, is to express (8-31) in terms of the
Nambu field ¥ .'** One then makes a Hartree factorization of
the expectation value. In the Nambu notation, j(q) takes the
form

j@ = - (k N ﬂ)wulm,.) (8-35)

:
m < 2
and P,; becomes

_ e 9 (1o, 4
Piam = =3z > (ko 3) (i + -,)

X CO|T{F\ (1) 1Wyt (1) P4 T (0)1F,(0)} 0> (8-36)
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Within the Hartree factorization, the expectation value becomes

= Tr ['/\-OlT{l‘uk+q(7)lyk+q+(0)}|0><0|T{¥jk( =)W (0303 8
= Tr[G(k + q. )Gk, — 7)) 8, . (8-37)

To make connection with Gor’kov’s formulation,'?! we note that
in carrying out the trace in (8-37), terms of the form G’
and (7,,(75," correspond to GG’ in Gor’kov's notation, while
G075,  and (,,G,," correspond to products of his F-functions.

Within this Hartree-like approximation, the time Fourier
transform of P,, is given by

ie? [ d*k q q ] .
Pote) = 3 [ (ko + ) (i + 3) Teiees + pecn 509
where ¢ = (q, ¢p). If the pairing potential is nonretarded, we
saw in Chapter 7 that within the pairing approximation G(k) is
given by

kol + e.13 + 4,7,
k2 - E2+18

G(k) = (B, = (62 + 4,27 (8-39)

[see (7-41)]. Since we are interested in the static Meissner effect,
we set g, = 0 and P,, reduces to

P.(q,0) = -2(e)2 f(;{:/;a (k + g).(k + %)]L(k, q) (8-40a)

m =

where the function L(k, q) is defined by

|

Lk q) = f ® TR e + g6k

2 ) .27
[ dky (ko® + exerrq + i diiq) )
YL 0w (ko? — EZ + 10) (kg2 — Brag + 10)

(8-40b)

In the reduction, we have used the relations

Yt

72 =
Trl =
Trr, =0 =Trrr, (t #J) (8-40c)

w
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The integral is performed by closing the contour in the upper
(or lower) half-plane and one finds for L(k, q) the real quantity

- _1_ _ Ek€kyq T didiq !
L(k! q) = 2 (l EkEh:+q Ek + Ek+q
Pk, k + q)

= 8-41
B, + By, (841

where p(k, k + q) is the coherence factor we met in Chapter 3.
This is the result of BCS.8-9

To establish the Meissner effect within the pairing approxi-
mation, we note that L(k, q) - 0 as ¢ — 0, owing to the coherence
factor p2(k, q) vanishing in this limit and the energy denominator
remaining finite (£, + E,,, > 24,). Therefore,

lim P (q,0) = lim R;q,0) =0 (8-42)
q—0 q-0
and the electromagnetic kernel reduces to the London kernel

lim K, (q, 0) 8, (t,7j = 1,2,3) (8-43)
q—0

1
=732

AL
The transverse part of this expression is

lim K (q,0) = Sy — 49, 1 (8-44)

2 2
q-0 q AL

By comparing this result with the general form (8-29) we see that

qlzii]:) K(q?) = /\%2 >0 (8-45)
which establishes the Meissner effect at zero temperature. Un-
fortunately, the longitudinal part of K does not vanish in this
approximation, but is given by (g,4,/¢?)(1/A,?); however, this un-
physical longitudinal response will be eliminated below.

The above derivation emphasizes the role of the energy gap
in bringing about the Meissner effect. Aside from scale factors,
_the quantity L(k, q), given by (8-41), is the square of magnetic
perturbation matrix element taken between the ground state and
a transverse excited state, divided by the-excitation energy for
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the two quasi-particles which are excited. In the superconducting
state, the matrix element vanishes as q® — 0 [i.e., p?(k, q) — 0]
and the energy denominator remains finite, in accordance with
the discussion in the beginning of this chapter. Therefore, only
the diamagnetic term in K, survives in this long wavelength limit.
In the normal metal L(k, q) goes over to the conventional result
of second-order perturbation theory:

1

- |Ek+a - Ek(

Ly(k, q) (8-46)

if the k and k + q are on opposite sides of the Fermi surface, and
zero otherwise, as required by the Pauli principle. As we argued
above, a finite value of P(q, 0) arises in the normal metal as
g2 — 0 despite the fact that most of the matrix elements vanish,
because of the vanishingly small-energy denominator in this
case. If one calculates the magnitude of P, one finds that it
almost exactly cancels the diamagnetic term, leaving the weak
Landau diamagnetism of the normal state.

In “gapless” superconductors!”’? both the matrix elements
and energy denominators vanish, but the density of states near
the Fermi surface is small enough to ensure that P, does not
cancel the diamagnetic term as q — 0.

To extend this calculation to finite temperature, we use the
prescription discussed in Chapter 7 to convert the zero tempera-
ture form (8-38) to one involving the discrete frequency sums.
The only -change is that L(k, q) becomes

Lk, q) = ——ng ~§:. Tr [Gk + q, 1w,)G(k, tw,)] (8-47)

where w, = (2n 4+ 1)7/B. As before we convert the sum to an
integral using (7-107) and obtain
i

Lk, q) = _QJ;% Tr [Gk + g, w)G(k, w)]f(w) (8-48)
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where the integral encircles the entire imaginary axis in a counter-
clockwise sense and f(w) = [e?“ + 1]-! is the Fermi function.
By expanding the contour to infinity we pick up residues at the
four poles + £, = +E and +E,,, = + E’, as shown in Figure
8-1. These residues lead to the real expression

E? + e’ + 44’
m[l - 2f(£)]

E'? + e’ + 44’ ,
+ 2E:(E12 — Ez) [l - 2f(E )] (8'49)

Lk, q) =

which can be written as

2k
Lk, @) = F g (1 = f(B) — f(By. )]

1%k, q)

+ Ek__E‘k—:‘ [f(Ek+l]) - f(Ek)] (8'50)

The coherence factors p? and {2 are given by

1 (l - Ekia + Akdk+q) (8-51)

§ EkEk +aq
the upper and lower signs applying to p and I, respectively.
Since we are interested in establishing the Meissner effect at finite
temperature we consider the limit of (8-50) as q — 0. The first

— DD —

—-E -—-E E E’

FIGURE 8-1 Poles contributing to the static electromagnetic kernel.
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term gives the contribution of the “‘superfluid’ electrons (i.e., the
superfluid component in the two-fluid model), and vanishes in this
limit as it did at zero temperature. The second term gives the
contribution of the thermally excited quasi-particles (i.e., the
“normal’’ fluid component) and does not vanish as ¢ — 0 since
the denominator vanishes in this limit. The essential physical
difference between the two terms is that the superfluid term
involves creation of two quasi-particles, with the minimum excita-
tion energy beéing 24,. On the other hand, the normal fluid term
involves scattering of quasi-particles already present and the
excitation energy in this case can be arbitrarily small, as in the
normal metal. Therefore L(k, 0) becomes

. _ Of(Ey) e _
il-r:r(lj Lk, q) = — 3B, — (@B + 1F Bfi(l — fi)  (8-52)

and from (8-40a) we find

. e\ [d% '
lim Pya,0) = ~2(2) [Gos kbl — ) (8:53)

It is convenient to define the effective density p,(7') of superfluid
electrons at temperature 7' by

® BE, dk
p(T) _ QBEFI po o dk (8-54a)

p0) RS Jo T (PR 4 1)

where the Fermi energy is given by E. = kz%/2m. The relation
p0) = n = 25 (8-54b)

states that all the valence electrons act as superfluid electrons at
T = 0. On combining (8-53) and (8-54) we find the simple form

. [y - 2d)
5 =—-——11 - 8,/ 8-55
im P00 = = [1 - 2] (828
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By using this result in the expression (8-24) for K,, one finds
within the pairing approximation that

. 1 [p(T )J <

lim K,(q,0) = —= |=—=1| & (8-56

im K,0.9) = 5375 2 & )
Thus, as long as p(7) is nonzero, K(g?) [defined by (8-29)], is
nonzero as q> — 0 and the Meissner effect is obtained. A plot
of py(T)/ps(0) is shown in Figure 8-2. As T — T, the density
of superfluid electrons vanishes and one goes over to the normal
state with its weak Landau diamagnetism.?

In summary, we find within the pairing approximation the
following phenomena:

1. The Meissner effect is obtained for all 7' < T'..

2. The transverse part of the electromagnetic response kernel
K goes to the London form in the long wavelength limit (8-56).

3. By recognizing that only the superfluid electrons give a
finite contribution to the transverse part of K as q — 0, we
obtain an expression for the density of superfluid electrons py(7')
as a function of 7' (8-54).

PS(T)
ps(0)

1
0 1 2 3 4

kyT
1.76[4—(1,)]

FIGURE 8-2 The superfluid density as a function of temperature. At
T = 0 all the electrons are in the superfluid, while at 7' > T', all elec-
trons are in the normal fluid.
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4. The kernel X is not manifestly gauge invariant within this
approximation.

8-4 ELECTROMAGNETIC PROPERTIES FOR FINITE
q AND w

Although it is gratifying to see the Meissner effect emerge
within the pairing approximation, one would like to know the
kernel K ;(q, @, T') for general values of q, w, and T, as well
as the effect of impurities on this function. This problem has
been worked out by Mattis and Bardeen.®®® Rather than re-
deriving their results' by the Green’s function formalism,°® ¢ we
simply state their conclusions. For many purposes it is more
convenient to express the kernel in coordinate space rather than
in g-space. If one works in the transverse gauge

V-A@r w) =0 (8-57)
they find
J(r, w) = - afdsr'ﬁ%ﬂl(w, R, T)e Rt  (8-58)

Here R = r — r’ and the constant « is given by

. = e2N(0)vg

2n2hic (8-59)

vp being the Fermi velocity (we do not set & = 1 in this section).
The form (8-58) is arranged to resemble the forms given by
Pippard®® and by Chambers®* for the Meissner effect and the
anomalous skin effect, respectively. The factor e~®' accounts
for impurity scattering effects, where [ is the electronic mean free
path in the normal state. The all important function / (w, R, T')
is given by

I(w, B, T) =f f {L(w, o) — [—f(—?—‘_@}

X C€OS [E(ih_i;:—e)] dede’ (8-60)
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where as usual f is the Fermi function. The function L(w, ¢, €')
is the generalization of the function L(k, q) of the previous
section, and is given by

N, 1 !
L(‘“"f'f)=§P2(E")[E+E'+ﬁw-ia+E+E'.—hw+i8]
x [ = f(E) = f(E")]
L, 1
+ 3! (E’E)[E~E’+)‘zw~i8

1
+E—E’—ﬁw+i8]

x [f(E") — f(E)] (8-61)

The coherence factors are defined by

pZ(ey 6’) = _l. (l — iiid_)

2 (8-62)
, e’ + 44
P ) =g (1 + g5 )

and E = (e + 42)Y2. In several limiting cases I (w, B, T') takes
a simple form:

1. hw » 4, In this limit, which includes the normal metal
as a special case, / becomes

I(w, R, T') = imhweR¥/*r (8-63)

and (8-58) reduces to Chambers’ expression for the anomalous
skin effect. This allows the coefficient « to be evaluated in terms
of the surface impedance of the normal metal in the extreme
anomalous limit.

2. w = 0: In this low-frequency limit (8-58) reduces to a
form closely related to Pippard’s equation. It is conventional
to introduce the function J(R, T') (not to be confused with the
current density J) by the relation

_ [ps(T)] mhoe i
I(0,R, T) = [ps(O)] 7 J(R, T) (8-64)
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where Pippard’s coherence length ¢, is defined in terms of micro-
scopic parameters by

ho
b= T4 (8-65)
In this limit (8-58) becomes
B -3 R[R - A(r")] _ p
J(r) = 4"6/1(7,)50] 7 J(R, Te Rt d3' (8-66)

where A(T') = m[p (T )e? is London’s parameter.! This expres-
sion agrees with Pippard’s equation except for the factor e-F%
being replaced by J(R,T) in (8-66). The definition (8-64)
ensures that the J(R, T') and e~ #/% have the same integral

f J(R, T)dR = & = f e-Rito 4R (8-67)
0 1]

for all 7 < T,.. One finds that not only are the integrals of the
two functions the same, but also the functions themselves resemble
each other over the entire range of R and 7. For example
J (R, 0) is within 5 per cent of e ®% for all R and J(0, 0) = 1,
J(0, T,) = 1.33.

3. g€y « 1, w = 0: In this long wavelength, zero-frequency
limit we have already seen that one has the London expression

1

T2
dy(r) = —PL(n;C)—e A(r) = ~ AT A(r)

(8-68)
for the pure superconductor, in agreement with (8-66) as can be
seen by taking A outside of the integral in this limit. For a
short mean free path ! « £, one obtains an extra factor
J(O, T)l/¢y ~ l]¢€,, which shows that the London penetration
depth increases with impurity concentration.

4. R€y « 1 (g€, » 1): If the field is well localized on space,
for example, by a skin depth A « £, or by the geometry of a thin
film where d « §,, one can evaluate I (w, B, T) at R = 0 and
take it outside of the integral in (8-58). Since the remaining in-
tegral is the same as in the normal state of the metal in this
limit (i.e., the factor e'””r ~ 1), we can normalize the current
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to that in the normal state and express the ratio in terms of the
complex surface conductivities o in the two states. Thus,

o, + io, _ I(w,0,T)

US
= = : 8-69
On O, irhw ( )

The expression for o,/o, was given in Chapter 3 while the expres-
sion for o, is

o, 1 J“‘ (1 — 2f(E + hw)|[E? + hwE + A?)dE
0 o Jyope-s ([47 - EAE + hw)® — AP]PP2

(8-70)
the lower limit being the larger of the two quantities 4 — fiw
and —4. At zero temperature, the ratio o,/o, is

2z _ 1 (1 + ;-i-)E(k') - —;- (1 - %)K(k’) (8-71)

while the absorptive part is given by

a1+ —2£)E'(Ic) _ 44 (k) (8-72)
n hw hw

In these expressions £ and K are the complete elliptic integrals
and

24 — hw

r_ (1 _ 12y12 —
k (I — %% where k |2A e

' (8-73)
The functions o, and o, have been calculated by Tinkham !2® for
T =0. For T # 0 numerical. calculations are necessary to
determine the surface conductivity; however, a simple low-
frequency limit is '

(D) 7TA A

= — tanh

o~ Fo Ao (8-74)

Calculations for a wide range of frequency and temperature have
been carried out by Miller.130

In general one finds remarkably good quantitative agreement
between these predictions of the pairing theory and experiment.
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As mentioned in Ch. 3, a precursor absorption had been observed
below the gap edge w/2A ~0.85. While ¢# 0 collective modes give
absorption in this region, the absorption is too weak to account
for these experimental results, which were later found to be spuri-
ous.

8-5 GAUGE INVARIANCE

While the simple pairing approximation gives an accurate
account of the response of the system to transverse electromagnetic
fields, it does not in general give the correct response to longi-
tudinal fields. In particular, we saw in a previous section that
it predicts unphysical longitudinal currents which depend on the
choice of gauge of the electromagnetic potentials. The physical
origin of this difficulty was first recognized by Bardeen,!3! who
pointed out that a (longitudinal) gauge potential couples primarily
to the collective density fluctuation mode of the electron system
(i.e., the plasmons of the charged electron gas). He argued that
if one generalizes the pairing scheme to include this mode in a
consistent way, a gauge-invariant theory would be obtained.
While a number of authors have contributed to the detailed
resolution of this problem, the pioneering work of Anderson*’
followed by that of Rickayzen 32 gave the essentials of a general-
ized pairing scheme which includes these effects. In essence,
their approach is to extend the random phase approximation to
include pairing correlations.

It is well known that a gauge-invariant response is a conse-
quence of local charge conservation in the system. By local charge
conservation we mean that the electronic current and charge
density operators satisfy the continuity equation at each point in

‘space and time,

Vej(r,t) + @ﬁgt'—t) =0 (8-75)

In Fourier transform variables this becomes

q* (9, 9o) — Gore(q, 90) = 0 (8-76a)
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With the definitions (8-5) and (8-6) plus the metric (1, 1,1, —1)
used previously, the continuity equation for the four-current
becomes

3
D %ujug) =0 (8-76b)
u=0

where ¢ = (q, ¢o) as usual. From these relations, it follows that
the expected current

Julr, £) = (ulr, £)) (8-77)
satisfies the continuity equation

oJ o(r, t) _

Vedr,t) + e 0 (8-78a)
or in Fourier transform space,
3
2 auulg) =0 (8-78b)
u=0

If we concentrate on the linear response of the system to the
potential 4,, we define [see (8-25)]

3
1@ = 1 > K@) (8-19)

It follows from the continuity equation (8-78b) that the response
kernel K, (q) must satisfy the equation

3
2, 4kl = 0 (8-80)

[For g, = 0, this condition reduces to the condition (8-28b),
used in discussing the static Meissner effect.]

Turning now to the restrictions imposed on K by gauge
invariance, we note that the most general gauge transformation
is of the form

A(r,t) = A(r,t) + VA(r,¢t)

eplr, 1) = op(r, 1) — 200 0)

(8-81a)
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The observable fields

1 8A(r, t)
e ot
B(r,t) = Vx A(r,t)

E(r, t) = — Ve(r, t)

(8-81b)
are invariant under this transformation. In Fourier-transform
space, the gauge transformation becomes

Aq) = 4,(q) + ig,A(g) (8-81c)

If the observable current is to be unaffected by the gauge
transformation, we must require that K satisfies

3
ZOKUV(Q)QV =0 (8-82)

To show the equivalence between the restrictions of local
charge conservation (8-80) and of gauge invariance (8-82), we
note that K, (q) satisfies the symmetry relations

Re K,,(q) = Re K,,(—q) (8-83a)
Im K,,(q) = ~Im K,,(—q) (8-83b)

as a consequence of the definition (8-26) and the spectral repre-
sentation (8-18) for the retarded commutator R,,. Therefore by
changing dummy indices, the real part of the charge-conservation
restriction (8-80) can be written as

Z ¢y Re K,,(q) = Z Re K,,(—-q)g, = 0 (8-84a)

or sending ¢, — —g,

2 Re K,,(9)g, = 0 (8-84b)

which is the real part of the gauge-invariance restriction (8-82).
In a similar way one finds for imaginary part

> ImK,(q) =-2>ImK,(-q)9, =0  (8-84c)
or

> Im K,,(g)q, = 0 (8-84d)
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which agrees with the imaginary part of the gauge-invariance
restriction (8-82). Therefore, in an exact calculation, gauge invar-
iance would follow as a consequence of local charge conservation.

Unfortunately, approximate calculations of K,, may not
maintain local charge conservation and therefore not lead to
gauge-invariant results. This difficulty, however, is no! peculiar
to the superconducting state. It is a commonly held view that
the gauge-invariance problem of the simple pairing approximation
is due to the use of wave functions which do not describe a system
with a fixed number of particles. That this is not the source of
difficulty is seen by realizing that the matrix elements entering
the kernel K involve the operator j,, which only connects states
[, N> with the same number of particles. Therefore, if the states
|«) used in calculating these matrix elements are an ensemble
average of states |«, N), each with a fixed number of particles,
as in the BCS approach, one simply obtains an ensemble average
of matrix elements, each of which is evaluated between two
states with the same number of particles. Since these fixed N
matrix elements are slowly varying functions of N, the ensemble
average does not affect the over-all result.

The actual source of error is that the quasi-particle excitations
are not treated accurately enough in the simple pairing scheme to
ensure local charge conservation under all conditions. Exactly
the same situation exists in the normal state if one does not work
within a “‘conserving” approximation, as Baym and Kadanoff!33
put it, even if one uses states which explicitly describe N-particles.
In treating the motion of an electron in the medium, one must
include the ““backflow” of other electrons around the electron in
question, 132:13¢ a5 Feynman and Cohen 135 stressed in their work
on excitations in superfluid helium. This backflow has a dipolar
form at large distance. As one can show, the backflow cancels
itself out if the quasi-particles are excited by a transverse field.®
Therefore, in calculating the response of the system to transverse
fields, the backflow currents play no role and one can obtain correct
results by an approximation which neglects these complicating
effects, as we did in the previous sections.
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On the other hand, for the longitudinal response of the system,
the backflow around a quasi-particle has a coupling to the external
potential which in the long wavelength limit is equal in magnitude
but opposite in sign to that given by the bare quasi-particle.
Thus the dressed quasi-particle (i.e., the bare quasi-particle plus
its associated backflow cloud) is very weakly coupled to a slowly
varying longitudinal potential, as Pines and the author have
discussed.!®* There is however an extra longitudinal mode of the
system which occurs once backflow is properly taken into account
and this is the collective density fluctuation mode.*"-%2 Physi-
cally, one can think of the collective mode simply as a compres-
sional wave in the superfluid. From this physical picture it is
reasonable that the current and particle densities associated with
this mode will satisfy the continuity equation. Since in the long
wavelength limit only the density fluctuation mode is coupled
to a longitudinal potential, it is reasonable that a gauge-invariant
response will be obtained once these effects are included.

Kadanoff and Ambegaokar have shown that in the long wave-
length limit the collective mode can be described as a state in
which the phase of the energy-gap parameter varies periodically
in space and time, while the inagnitude of the gap parameter
remains fixed. Since the phase of the gap parameter gives the
mean local center-of-mass momentum of the superfluid pairs, a
periodically varying phase is exactly what one would expect if the
superfluid momentum density varies periodically.

There are now a number of formalisms for including the
backflow and the collective mode: One of the simplest ways to
handle the problem is to make use of a ‘“‘generalized Ward’s
identity,” which is the Green’s function analog of the continuity
equation. By making approximations which are consistent with
this identity one can ensure local charge conservation and therefore
gaugeinvariance. This approach was first discussed by Nambu,!*
and we follow his line of argument below.

We consider the time-ordered quantity A, (x, y, z) defined in
terms of the Nambu field ¥ by

Au(x,y,2) = OT{.() ¥ @) ¥ (9)}0> (8-85)
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The four-current density j, is defined by (8-6). It is clear that
the paramagnetic kernel R,, can be calculated from /1, by taking
the appropriate gradients and traces of (8-85), as we shall see
below. We define the vertex function I',(z’, ¥, z) by the integral
relation

Alx,y,z) =¢€ fG(:c, 2 )Ty (2, ¢, 2)G(y', y) d*x’ d*y’  (8-86)
where
Gz, z') = —iO0|T{¥P(x)¥*(")}|0) (8-87)
is Nambu'’s one-particle Green’s function. We assume the system
to be translationally invariant so that we can write
d*pdiq
(2m)°
The generalized Ward’s identity for the superconductor is then

T(2,y,2) = jru(p + g, plellPr -vIraar=2l (8-88)

3
> a.T(p + ¢.p) =D ali(p + ¢.p) — ¢To(p + ¢, P)
u ’ 1=1 (8-89)

= 13G7Y(p) -~ G Hp + ¢)7s
To prove this identity, we take the four-divergence of A,
with respect toz = (2,25 = t,):

3 3A 3, 95, 7]

+ 0| T{[jo(z), ¥(@)]¥* (9)}|0> 8(z0 — o)
+ CO|T{¥(x)[jo(2), ¥* (¥)1}]0> 8(z0 — yo) (8-90)

The last two terms on the right-hand side arise from differentiating
the time dependence due to the time-ordering symbol 7. Now
the first term on the right-hand side of this expression vanishes
by virtue of the continuity equation (8-75). If we use the equal
time anticommutation relations of the ¥’s (7-21), the commutators
in (8-90) can be reduced to

[Jo(2), ¥(x)] 8(zo — ) = e73¥(2) 8*(z — x) (8-91a)
and

(Jo(2), ¥*(¥)] 8(z0 — yo) = —e¥*(y)73 8%z — ¥)
(8-91b)
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By inserting these expressions into (8-90) and using the definition
(8-86), and (8-87) we find

1G(x — 2)753 8%z — y) — im,G(z — y) 8% (z — )
f(}z—q)[zaz Z} (y — y)dx’ d“ (8-92)

Going over to Fourier transform variables we find (8-92)
reduces to

G(p + q)73 — 75G(p) = G(p + ) Z 9.T.(p + ¢, p)G(p) (8-93a)

or finally by operating with G~1(p + ¢) on the left and with
G~ !(p) on the right we obtain the generalized Ward’s identity

Z 9.T.(p + ¢.p) = 7G~1(p) — G~Y(p + g)r; (8-93b)

as stated.

What is the physical significance of T, and why is this
identity of interest? The significance of T', can be best under-
stood by noticing that the four-current density operator j,”(q)
can be written in the Nambu notation as

ZW1.+[_e<p+g) l]l]/p“l (p=1=123)
=/1
@ =4 (8-94)
S ‘P,.*[— ‘-""a] ¥yru (n = 0)
P
If we define the ‘“free’’ vertex function y,(p + q, p) as
1 =i=123
—p+7)l (/.L—lml,,)
Yup +q,p) =™ </ (8-95)
73 (r =0)

then j,7(q) can be written as

3A@) = —e > ¥ P + 4. P ¥iq (8-96)
P
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The vertex function T',(p + ¢, p) is then a ‘““dressed” version of
the free vertex y,(p + ¢, p). To make this plausible, we apply
the generalized Ward’s identity to a system of noninteracting
electrons. Since ¢ ~!(p) becomes

Gy H(p) = pol — €p73 (8-97)

in this limit, where €, = (p?/2m) — p, (8-93b) reduces to
2 auTu(p + ¢.P) = (ysa = &)1 — Qo7 (8-98)

However, this relation is identically satisfied if T, is the free
vertex y,. Therefore, we can think of the dressed electrons as
interacting with the electromagnetic field through the dressed
vertex (—el,).

As to why the generalized Ward’s identity is of interest, we
shall now see that the paramagnetic kernel can be simply ex-
pressed in terms of G and I',. Furthermore, if we approximate
G and T in a way which maintains Ward’s identity, the full
electromagnetic kernel K,, will be manifestly gauge-invariant.
From the definitions of the time-ordered kernel P,, (8-21) and the
vertex function I', (8-85) and (8-86), it is straightforward to show
that P,.(q) is given by

. d*p
P, (q) = —i€ fTr Yu(p, 2 + 9)G(p + q)T\(p + g, p)G(p)]w—n).,
(8-99)

If we consider only the components of P,, with p and v # 0,
and approximate the vertex function T, by the bare vertex y,,
we retrieve the expression (8-38) given by the pairing approxima-
tion. The lack of gauge invariance within this approximation
is a consequence of calculating P,, with dressed G’s but bare
vertex functions, thereby violating the generalized Ward’s
identity.

It is-convenient to represent the relation (8-99) in graphical
form. In Figure 8-3 we show P,,(q) represented in terms of the
dressed electron lines and the vertex parts. While P,, appears
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pP+gq ripp+ 9

Yu(p + ¢, p)
P,(g) = —ie? x - —— - ——
q q

P
FIGURE 8-3 The polarizability kernel P,, represented in terms of
the bare and dressed vertices y, and I',, respectively.

to be uhsymmetrical in p and v, the expression (8-99) is equally
valid if y, > T, and T, —v,.

We now prove that K, is gauge-invariant if the generalized
Ward’s identity is satisfied. This follows by writing

> P.(q)g, = —i€? JTF [Yu(PrP +@G(p + 9 D> ¢.T(p + ¢, p)

d4
x G(p)] T

=ie? fTr [yu(2: 2 + Q)G(p + G (P + )75
d4
~ G PGP g

=it [Trvulp, B + O(rs8(p) ~ Gp + Q7o)

R it
In the second equality we have used Ward’s identity (8-93b).
Since 73 commutes with y,, the last equality in (8-100) reduces
to

> Pu(q)g, = e fTr yu(p + ¢.9) — vulp, 2 — D)}

d4
x 4G(p)] ﬁ (8-101)



Electromagnetic Properties of Superconductors 233

when we use cyclic invariance of the trace. From the definition of
Y. (8-95) we see that

YuP + @D - Y22 — 9) = % (1-8,, (8-102)

Therefore, we obtain the simple expression
ne?
2 Pul@), = ——au(l = 8,.0) (8-103)

where we have used the relation (7-35) giving the number of
electrons per urnit volume in terms of G. Since the right-hand
side of this equation is real, (8-24) allows us to replace P,, in
(8-103) by the physically relevant kernel R,, and we finally obtain

2
z R, (9), = _E,m'e— g1 = 8,, 0] (8-104)

To check that K, is manifestly gauge-invariant due to this result,
we use (8-26) to write the gauge-invariance condition as

4 1
2 Kulaldy = 0 = 55 3 Rula)ay + 530l = 80l (8-105)

Since 1/A,2 = 4mne?/mc?, we see from (8-104) that the gauge-
invariance condition is satisfied identically,

dne? 1

z Kuv(q)qv = [_W + ‘)‘_Lz‘:lqu[l - Su.o] =0 (8-106)

In the next section we shall discuss the generalization of the pairing
scheme which is required in order that the generalized Ward’s
identity is to be satisfied.

8-6 THE.VERTEX FUNCTION AND COLLECTIVE
MODES

In seeking a gauge-invariant generalization of the pairing
scheme, Nambu used a well-known prescription of quantum-
field theory for constructing approximations which satisfy the
generalized Ward’s identity (GWI) (8-89).137 If G is described
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FIGURE 8-4 The pairing approximation sums all no-line-crossing
graphs contributing to Z.

by a certain set of perturbation series graphs, the corresponding
vertex function I', (which satisfies the GWI) is given by the sum
of all graphs in which the free vertex y, is inserted in each bare
electron line in this set. The pairing approximation for G,

G~Y(p) = pol — €73 — E(p) .(8-107)

4.1

. , L dy;
Z(p) =1 frac(p ) (p — p') (27;’;4 (8-108)

can be formally thought of as the sum of all graphs in which no
two interaction lines cross, as shown in Figure 8-4. If the vertex
Y, is inserted at all possible places in these graphs, the resultant
series is summed by the ladder graph approximation for T, as
shown in Figure 8-5. Therefore T, satisfies the linear integral
equation

TP+ 9,7 = YuP + ¢. )

. ) &5k
+i ffs(;(k + QT (k + g, KBk ¥ (p — k)

(2m)*

p+tyq p+gq p+a
E+g
q q
k
P p P

FIGURE 8-5 An equation for the vertex function I, which leads to
manifestly gauge-invariant results for the electromagnetic kernel
within the pairing scheme.

(8-109)
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where the G’s are the Nambu functions evaluated within the
pairing approximation (8-108). To check that the solution of
this vertex equation is in fact consistent with the GWI, we form
the quantity

> q.Tup + ¢.9) = 2 ¢.¥.P + ¢, P)
u u

+ iffac(k + 9 S Tk + g k)
s 4].

dik
x G(k)r¥ (p — k) o

oi (8110

The right-hand side of this equation can be reduced by use of the
assumed GWI. By using the relation

> quTu(k + g, k) = 767 k) — G™'(k + )75 (8-111)

we see that the second term becomes

. dk
[l fTSG(k + q)Tay/-(p — .IC) W] T3
d*k ]

— T3 I:'l J\TGG(]C)TG’%/‘(Z) —_ IC) (2—")4'
= Z(p + @)ra — 7=(p) (8-112)
where we have used the equation determining XZ(p) (8-108). In
addition, from (8-95) we see that the free vertex satisfies
2 0YulP + 4 P) = (ug — &)1 — Qora  (8-113)
u
On combining these results, (8-93b) reduces to
2 2.Tup + 0, 9) = ma[Pol — 675 — E(P)] — [(2o + o)1
u
— €p1qT3 — z(p + q)]TG
= 73G7}p) — G"}p + ¢)73 (8-114)
which is the required GWI. Therefore, if G and T', are given by
solutions of Egs. (8-107), (8-108), and (8-109), the electromagnetic

kernel K,, determined through (8-99) will be manifestly gauge-
invariant.

To understand the mechanism by which gauge invariance has
been restored in this rather formal scheme, we again look at the

-
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GWI. If we assume that the dressed vertex I', is a well-behaved
function in the limit q and ¢, go to zero, the left-hand side of
(8-114) vanishes while the right-hand side becomes the finite
quantity

Ta&a(p) — B(p)Tg = 2imh(p) = 27,4, (8-115)
(the second equality holding for a nonretarded pairing potential).
Therefore, T',(p + g, p) must be singular for ¢ = 0. If one
thinks of the. coupling as going through a set of excited states
of the system (i.e., one thinks of I', as written in a spectral form),
one is tempted to argue that the ¢ = 0 singularity in I" reflects
the existence of a low-lying collective mode whose frequency £,
goes to zero in the long-wavelength limit. To check this idea
we would like to obtain an explicit solution of the vertex equation
(8-109) and see if I', is actually singular for ¢, = £, and q # 0.
As in Chapter 7, this f-matrix-like equation can be solved if
¥ (k — p) is approximated by a factorizable potential

Y (k — p) = Aw*k)w(p) (8-116)
In solving (8-109) it is convenient to think of the 2 x 2 matrices
I', and y, as being represented by four-component column

vectors. Thus we replace the matrix component (I|T',|r> by the
column vector component (T',);, and (8-109) becomes

Tp + ¢.p) = vu(p + ¢, D)
+ 2Aw*(p) fra’G'(lc + q)-rs’(-i'(k)
4].

d*k
x T,k + q, kyw(k) i (817
The scripts ! and 7 indicate which part of the double script (Ir) the
matrices act and G means the transpose of G. Since the last
term in this expression is a constant (matrix) multiple of w*(p),

we have
T,(p + ¢, p) = Yu(p + ¢, p) + w*p)C, (8-118)
where the constant C, is defined by

4.

C, = 1A fTS‘G'(k + )" G (k)T (k + g, k)w(k) A%k (8-119)

(2)*
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By inserting the relation (8-118) into (8-119) and solving for C,,
one finds the explicit solution

L(p +¢.p) = Yup + ¢.p) + [1 - 2b(@)]) "xu(g)w*(p) (8-120)
where ¢(q) is a generalization of the function d(q) [see (5-21)] used
in discussing the instability of the normal state. The matrix
function ¢(q) is given by

d*k
$(9) = ifra'G'(k + O @Rk g (8-121)

The matrix y(g) is defined by
d*k

i (8-122)

Xu(0) = id [ + Q)@ ULk + 0, bulk)
Since y, is regular for ¢, < 24, the singularity of I', must arise
from a singularity of [1 — Ad(g)]~'. For this matrix to be
singular, the determinant of its inverse must be zero. Therefore,
the dispersion law for the collective mode (or modes) is

det [1 — Adp(q, 2,)] = 0 (8-123)

where , is the frequency of the mode in question. If we assume
s-state pairing and as in Chapter 7 take w(k) to be

_ 1 Iekl < w,
wik) = {0 otherwise (8-124)

there is a root of (8-123) which for |q| £, « 1, satisfies the dispersion
law

Q= (_31;’;_/2 |a (8-125)
This sound-wave mode was first discovered by Bogoliubov.52
Physically, it corresponds to long wavelength density fluctuations
of the electron system as a whole. Since the pairing correlations
are not expected to be changed appreciably by slowly varying the
electron density in space and time, one might expect such a
collective mode on physical grounds. In fact (8-125) follows if
one uses the standard hydrodynamic expression for the speed of
sound s:
_aPpP
dp

s2

(8-126)
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where p and P are the mass density and pressure of the free-
electron gas. Therefore within this approximation pairing corre-
lations play no direct role in determining the velocity of this mode;
their main function being to remove low-lying single-particle
states which would otherwise lead to damping of the wave.

Returning to the solution (8-120) for the vertex function, if
the two-body potential is purely s-wave, the transverse part of
x. vanishes, as one can easily see on symmetry grounds from
(8-122). Therefore vertex corrections do not affect the Meissner
kernel in this case. Ifthereisa finite attractive d-wave part of the
potential, d-state excitons exist and will contribute to the vertex
function. Calculations by Rickayzen show that these collective
corrections to the Meissner kernel are in general small.

If there is a strongly attractive d-wave potential one should
see a precursor for infrared absorption below the gap edge, owing
to creation of d-state excitons.!38-13% Such anomalies were first
observed by Ginsberg, Richards, and Tinkham,”!:72 although as
Tsuneto!3® has shown, the predicted absorption is an order of

I, = 0.961,
i)
24
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FIGURE 8-6 Energy of a p-state exciton as a function of momentum.




Electromagnetic Properties of Superconductors 239

p+aq
p+a oy

FIGURE 8-7 Vacuum-polarization correction to the equation shown
in- Figure 8-5. This correction is all important in the longitudinal
part of P, and leads to plasma oscillations.

magnitude weaker than that observed experimentally. Since
the calculations were carried out on a continuum model, momen-
tum was conserved in the absorption process. Owing to the fact
that the excitons pass into the single-particle continuum for
q 3 1/&, as shown in Figure 8-6, only the long wavelength com-
ponents of the penetrating field contribute to exciton creation,
and these small g-components are small compared to those for
g ~ /A » 1]&, thereby giving a small absorption. Experi-
mentally, the precursor is essentially unaffected by impurities.!30®
Since the exciton state is destroyed by impurities,'3°¢ it appears
that the precursor is due to another mechanism. [Subsequent ex-
periments have shown the precursor absorption to be spurious].

Thus far we have neglected vacuum-polarization processes in
the vertex function I',. As we saw in Chapter 6, these processes
dominate the long wavelength polarizability of the electron gas
because of the long-range Coulomb potential and therefore must
beincluded in I'.  The vertex équation including vacuum polariza-
tion processes is illustrated in Figure 8-7. The only change in
(8-109) is to add the term

o, d*k
— V() fTr (e + QT (k + . KB s (8-127)
to the right-hand side. Here Vg(g) is the sum of the bare Coulomb
and bare longitudinal phonon interactions:

42
Vsla) =~ + |9al*Dala) (8-128)
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To make connection with the RPA for the electron gas, we note
that Ppp, (4-2) is proportional to Py, in (8-99) when we (1)
include only the polarization term (8-127) in the equation for
T,, (2) replace all ?’s by Gy’s, and (3) set g, = 0. It is easily seen
that when (8-127) is included, the solution T',(p + ¢, p) continues
to satisfy the GWI and K, is still manifestly gauge-invariant.
By explicitly solving this improved vertex equation, one can see
that the Bogoliubov sound-wave mode continues to exist if
Vg(g) approaches a finite value as q— 0, as Anderson®’ first
showed. In the presence of the Coulomb potential, which of
course always exists in real metals, the Bogoliubov-Anderson
mode is pushed up to high energy and becomes the plasma oscilla-
tion of the electron system. Therefore, the ¢ = 0 singularity of
T.(p + g, p) required by (8-115) does not imply a low-lying boson
mode in physical metals due to the long-range Coulomb inter-
action between electrons.

8-7 FLUX QUANTIZATION

A qualitatively new effect arises when we investigate the
electromagnetic behavior of a multiply connected superconducting
system, e.g., a long, hollow cylinder. In this case, flux can be
trapped in the hole and persist in the absence of an externally
applied field. On the basis of London’s “rigidity” concept he
concluded that for a cylinder with walls thick compared to the
penetration depth A, flux could be trapped only in multiples of
hcle = 4 x 1077 gauss em2! This value of the flux quantum
follows if one assumes that the only low-lying current-carrying
states of the superfluid are those given by multiplying the super-
fluid ground state by a single-valued phase factor, as we saw in
Chapter 1. We shall see below that there are fwo distinct sets
of low-lying states, one being the set considered by London, the
other arising from phase factors multiplying a basic state which
is not included in London’s set. Owing to these two sets of
states, the flux quantum in superconductors is actually hc/2e,
i.e., one-half the London unit. The even multiples are associated
with London-type states, while the odd multiples are due to the
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other series of states, as Byers and Yang!® first pointed out.
The value hc/2¢ was observed experimentally by Deaver and
Fairbank?%2 and by Doll and Nébauer2® prior to Byers and
Yang's work.

Perhaps the simplest way of understanding flux quantiza-
tion is by considering a long, hollow cylinder of inner and outer
radii « and b, respectively. Suppose the cylinder is initially in
the normal state in the presence of a magnetic field and the
temperature is lowered so that the cylinder becomes supercon-
ducting. Owing to the Meissner effect, the magnetic field will be
expelled from the material and in general there will be a finite
magnetic flux @ trapped in the hole. If we assume the wall
thickness b — a is much greater than the penetration depth, the
magnetic field in the penetration layer will be a small perturbation
on the system as a whole and cannot affect our results. If we
use cylindrical coordinates (r, 0, z), the vector potential is given

by
§A(r’)-dr’ = fB-dS = &(r) (8-129)

where the line integral is taken around a circle of radius » and
®(r) is the flux enclosed by the path. Since &(r) goes to a constant
@ (the total trapped flux) for » — a » A, we write

D(r) - @

s = 44(r) + A0()  (8-130)

Ay(r) = 2—(5—,‘, +
and only include 4,°(r) in zero order, A’ being treated as a
perturbation. We first consider the single-particle states defined
in the presence of 4‘® and then pair up these states to form the
superconducting phase. The azimuthal part of the single-particle
eigenfunctions satisfy

ed 02
[pﬂ + c ] h2
om, Pu(0) = W (M + @)*py(0) (8-131a)
where
ed
P = 7y (8-131b)
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is the flux measured in units of London’s flux quantum and
Pps(0) = M8 (8-131c)

In order that ¥, be single-valued, M/ must be an integer. The
dynamics is simplified if we assume the thickness of the cylinder
b — a is small compared to the radius a. The angular kinetic
energy is then #2(M + ¢)?/2ma?, i.e., a parabolic function of M,
centered about M = —¢. If we are to obtain a low-energy
state of the system we must pair single-particle states which are
(a) degenerate with each other and (b) coupled to other paired
states by the two-body potential. Condition (a) means that the
paired states M and H must satisfy

M + ¢| = |M + ¢ (8-132)

This condition can be satisfied if M = M but conservation of
angular momentum forbids the two-body potential from connecting
states paired in this manner. The other choice is M + ¢ =
—(M + o), that is, M = m — ¢ and M = —m — ¢ are paired,
so that the pairing is symmetric in A} -space about the value
M = —¢. Since M and M are.required to be integers, it follows
that m and ¢ are both integers or both half-odd integers. There-
fore, we conclude from this result and (8-131b) that one obtains a
large pairing energy and therefore a low-energy state of the system
only if the trapped flux is given by

he
@ = n(-é—e) (8-133)
where 7 is an integer. In Figure 8-8a, b, ¢, and d we illustrate
the pairing for » = 0, 1, 2, and 3, respectively. Geometrically,
one simply pairs symmetrically about the value M = —n/2.
Notice that the states being paired for » = 0 and n = 2 (Figure
8-8a and c) differ only by a shift of all the angular momentum
quantum numbers by the fixed amount —1. Thus, the system
wave functions for the n = 0 and n = 2 states are related by the
phase factor

go(ry, Tg- - oxy) = 7 3 0ho(ry, Tp- - 1y) (8-134)
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FIGURE 8-8 Pairings of azimuthal quantum numbers for flux quantum
numbers n = 0, |, 2, 3 are shown in (a), (b), (), and (d), respectively
[see Eq. (8-133)].

in agreement with London’s argument. The states forn = 1 and
n = 3 are related in the same manner:

Pa(ry, ra- - o1y) = 3”‘?‘”"/’1("1:"2""‘1«) (8-135)

The essential point is that the even n- and odd n-states are not
related by a phase factor. For example, the n = 0 and n =1
states differ by sliding only the mates to the right of 4/ =0
left one notch in forming the n = 1 state from » = 0. This
cannot be done by a phase factor, yet the states differ little in
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energy, contrary to London’s assumption. It is this ‘“‘extra
degree of freedom’ which was missing in London’s argument
and leads to the flux quantum being kc/2e rather than Ac/e.

The quantization of flux leads naturally to the stability of
persistent supercurrents. In order for the supercurrent in the
cylinder to ““decay,” the system must make transitions between
macroscopically distinct states with different flux quantum
number n. Thus the current cannot slowly ‘‘dribble” away,
but it must decrease in macroscopic steps. The probability for
such a macroscopic thermodynamic fluctuation is presumably
vanishingly small since typical fluctuations involve the excitation
of a few particles at’a time rather than the entire system as a
whole. This point of view has been emphasized by Bohr and
Mottelson,'*! and while it is not an airtight theory, it is a com-
pelling argument in the absence of a more complete calculation.

8-8 THE KNIGHT SHIFT

On the basis of our earlier discussion it would appear that
the electronic spin susceptibility should vanish in a superconductor
as- T'— 0 if one uses s-state pairing. In this case the Pauli
principle ensures that the spins are paired in the singlet state
so that a finite spin magnetization can result only if the spin
Zeeman energy 2ugH is greater than 2 4,, the minimum energy to
break up a pair. A means of checking this prediction is the
Knight shift142 (the change in nuclear magnetic resonance fre-
quency due to the coupling of the nuclear spins with the polariza-
tion of the electrons). If only the electronic spin polarization
(as opposed to orbital effects) is important in the shift, the Knight
shift gives a measure of the electronic spin susceptibility. Reif!4?
found that the shift in superconducting mercury, when extrap-
olated to 0°K was about two-thirds of the value in the normal
state, contrary to the simple pairing theory. Androes and
Knight 4 found similar results in tin, while the shift in vanadium
is nearly the same in the N- and S-phases.
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There have been several attempts to explain this discrepancy,
none of which is widely accepted at present as providing the essen-
tial mechanism. It may well be that a fraction of the observed
shift comes from several of the following mechanisms.

Parallel Spin Pairing

If one uses p-state (or any odd [-state) pairing, the anti-
symmetry of the wave-function forces the spins to be paired in
triplet states. Fisher3%® studied the model in which one pairs
states with equal z-components of spin (i.e., up paired with up,
down with down). The reduced Hamiltonian is then the sum of
two noninteracting parts. In this case there is no energy gap
for creating spin polarization since a down-spin pair can be changed
into an up-spin pair with no change of energy. Unfortunately,
this type of pairing leads to an anisotropic energy gap which
vanishes in certain directions and a nonexponential electronic
specific heat at low temperature. A more general triplet pairing
has been treated by Balian and Werthamer3°¢, who include all
three components of the triplet state. In a pure material they
obtain an isotropic energy gap; however, a small amount of dis-
order or impurity (which was certainly present in the above
experiments) destroys their state as well as that of Fisher.

Spin-Orbit Coupling at the Surface

Since the Meissner effect screens out the magnetic field within
a distance A ~ 5 x 107%cm of the surface, the Knight shift
experiments are carried out on specimens whose dimensions are
small compared to A in order to eliminate line broadening due to
the field inhomogeniety. The smallness of the particles led
Ferrell 4% to suggest that the spin-orbit coupling near the surface
might be sufficiently strong to mix the one-electron spin states
during scattering and thereby lead to a finite spin susceptibility.
A semiquantitative theory of this effect was worked out by Ferrell
and by Anderson,!*® however, we shall not discuss the calculations
here. Unfortunately, as mentioned above, recent measurements
on vanadium and aluminum,**”'which are light metals and should
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have appreciably weaker spin-orbit coupling than mercury and
tin, give essentially the same Knight shift in the normal and
superconducting states. This rules out the spin-orbit mechanism,
at least in this case.

Collective Magnetization

In the original BCS paper?® it was suggested that there might
be low-lying collective spin wave states in a.superconductor
which give rise to the observed Knight shift. Bardasis and
Schrieffer 13° found that by retaining the p-wave part of the two-
body potential, spin wave states can exist in the energy gap.
However, to obtain a nonzero long wavelength susceptibility the
spectrum must go down to zero energy in this limit. These authors
found that two situations can exist. If the p-wave part of the
two-body potential is weaker than the s-wave part, the spin
waves possess a finite energy as their momentum goes to zero.
If the p-wave potential is stronger than the s-wave potential, the
spin wave states are unstable and the ground state is then formed
by p-state pairing. One is then led back to the difficulties of the
first proposal.

Modified Antiparallel Spin Pairing

Soon after the BCS theory was proposed, Heine and Pippard!#®
suggested that one might relax the strict BCS rule of pairing a given
state k with only one other state k. They argued that if k is
paired with a group of states centered about k, a finite spin sus-
ceptibility might result. Their argument was based on anassumed
form of the two-particle density matrix which is not consistent
with that given by the most general form of the pairing theory.
Since it has not been possible to construct a wavefunction which
gives their density matrix, it appears that their basic assumption
cannot be justified and we are forced to reject this point of view.

Subsequent to Heine and Pippard’s proposal, Schrieffer!*?
argued that a finite spin susceptibility would be obtained if the
pairing condition were modified in the magnetized state. In
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particular, he suggested pairing states k4 and —k’}, which
are degenerate when the spin Zeeman energy is included, rather
than the BCS prescription of pairing degenerate orbital states k 1
and —k|} . This scheme then leads to a net spin magnetization.
In a pure unbounded specimen the modified pairing gives essen-
tially no pairing energy since momentum conservation forbids
a pair with center-of-mass momentum k — k' from scattering
into a pair state with center-of-mass momentum k -k, owing to
these momenta being different in general. Under experimental
conditions, impurity and surface scattering is sufficiently strong
to spread the single-particle states ‘k’’ in momentum space by
an amount large compared to the ‘“‘center-of-mass’ momentum
i|k — K'| ~ 2ugH[ve. Therefore, the actual single-particle eigen-
states (including these one<particle scattering effects) can be
formed into pairs in the above manner and coupled by the two-
body potential. The pairing still occurs between two definite
single-particle states. It is reasonable to assume that the reduc-
tion in the pairing energy will be a smoothly varying function of
the net spin magnetic moment and therefore a finite spin sus-
ceptibility will result. This scheme is very different in point of
view from that proposed by Heine and Pippard, who argue that
a group of single-particle states are strongly correlated in occu-
pancy (even in a pure, unbounded specimen).

Recently Cooper!®® has reinvestigated Schrieffer’s idea by
introducing a phenomenological two-body potential whose matrix
elements are taken to be a slowly varying function of the center-
of-mass momentum of each pair. This leads to a pairing energy
which varies slowly as a function of the spin magnetization and
gives a finite spin paramagnetism. Cooper stressed the added
possibility of momentum nonconservation being due to a non-
translationally invariant two-body potential.

Orbital Paramagnetism

.Clogston, Gossard, Jaccarino, and Yafet!®! have argued
‘convincingly that in vanadium essentially all of the Knight
shift is due to Kubo-Obata temperature-independent orbital
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paramagnetism.’®®  Since this orbital paramagnetism should be
the same in the V- and S-states, the lack of change in the Knight
shift in vanadium is presumably explained without modifyving the
pairing theory. It appears unlikely that this mechanism can
account for the obsérved shift in all cases.

8-9 THE GINSBURG-LANDAU-GOR'KOV THEORY

Thus far we have concentrated on the response of a super-
conductor to weak electromagnetic fields. There are many im-
portant problems, e.g., N-S phase boundary, the intermediate
and mixed states, etc., in which the magnetic field enters in a
nonperturbative manner. These problems typically involve the
energy-gap parameter 4 varying as a function of position in the
materials. As we discussed in Chapter 1, the phenomenological
theory of Ginsburg and Landau3® (proposed in 1950) gives in
many instances a good account of these strong field situations.
An important advance in the microscopic theory was made by
Gor’kov,®” who showed how the GL equations follow from the
pairing theory when 7' is near T, and the magnetic field varies
slowly in space over a coherence length. Gor’kov found that the
GL effective wave function ¥(r) is proportional to the local
value of the gap parameter 4(r) and the effective charge e* of the
GL theory is equal to 2, the charge of a pair of electrons. It is
interesting to note that these results were guessed prior to
Cor’kov’s work, the identification of ¥(r) and 4(r) being suggested
by Bardeen® and the cffective charge e* = 2e being suggested
by (linsburg!®3 prior to the BCS theory in order to fit the GL
theory with experiment.

We give a brief summary of Gor’kov’s derivation below.
To familiarize the reader with Gor'kov’s scheme, we use his
notation. For simplicity Gior’kov used a nonretarded zero-range
attractive potential to describe the pairing interactions. Since
this singular potential leads to divergences, it is cut off in momen-
tum space at the appropriate point in the derivation. The vector
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potential A(r) is treated self-consistently as we did above in the
weal-field case. The system Hamiltonian is then

](//S {7"1 [\7 - %A(r)]z + p.}xl;s(r) dr
= o [ Ol ) 7 (8130)

where e = —|e| is the charge of an electron, and we measure
single-particle energies relative to the chemical potential p. The
thermodynamic Green’s function

N Tr e T @) * (@)

G, 2) =< Tre-fH
= —(T{r(x)r * (@) (8-137a)
is defined for pure imaginary time
P(x) = P(r, 7) = ef(r, 0)e~H (8-137b)

and satisfies the equation of motion

b7 1 1e 2 ,
{_5; T [v - ZA‘”)] + p}G(z,u
+ VKT{hr * (@), * (@) () (0))) = 8(x — 2) (8-138)
This result follows from (8-136) and (8-137) since

. 2
a¢,(z) — [H, $(x)] = {_ [v - %A(r)] + ;1-}51!1(1')
+ Vit @)y (@) (2) (8-139)

In Gor’kov’s scheme, the pairing approximation for this zero-
range potential corresponds to factorizing the four-point function
in (8-138),

(T @)Wy * (@) () () }) => (T @)y (@)D () ()
(8-140)

Therefore the equation for G becomes

0 1 g 2
{—57-_ + >m [V - 2;A(l‘)] + ,U.}G(ZC, z')
+ A(r)F*(z,2') = 8(x — z') (8-141)

250 Theory of Superconductivity

<t

where the ““anomalous’ Green's function F*(x, z') is defined by

Frz, o) = =(T{p, " (@) " () (8-142)
and the energy-gap parameter A(r) is given by
A*x) = VO (0% = VF*(x, ') (8-143)

The functions G and F* correspond to Nambu's G, and G,
Since F'* is an unknown function, it must be determined from its
equation of motion. By making a factorization similar to that in
(8-140), (except that the four-point function now contains three
J*’s and one ¢, one finds

0 2
{61 + — [V + —A(r)] + p.}F*(x, ') — 4*(r)G(x, x') = 0
(8-144)
As we discussed in Chapter 7, the pure imaginary time
Green’s functions can be expressed in the Fourier series variable

w, = (2n + 1)7/B (n = integer) and one finds the Fourier com-
ponents % (r, r') and & ,(r, r') satisfy

{iwn + ‘)LZ [V - %A(r)]z + p,}gw(r, r).
+ A(£)ZF ,(r,r') = 8(r — ')
. 1 e 2 ,
{'—uun + o [\7 + —-A(r)]’ + p}.%""w(r,r)
— 4A*(r)G,(r,t') = 0 (8-145)

These equations together with the condition (8-143)
A*(r) = = z (r, ) (8-146)

in principle determine the behavior of the superconductor in the
presence of an arbitrarily strong potential 4 at any temperature
kT = 1/B.

The nonlinearity of the coupled equations makes them
difficult to handle. Gor’kov restricted his attention to the region
T near T, where the gap parameter is small so that a perturbation
expansion in powers of 4 can be carried out (in the spirit of the
GL theory). Furthermore, the penetration depth A becomes
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large compared to Pippard’s coherence length ¢, for 7 ~ 7', and
therefore A will vary slowly over a coherence length. In this
limit the linear relation between the current density and the vector
potential reduces to London’s equation. To carry out the series
solution of (8-145) in powers of 4, Gor’kov wrote these equations
in integral form

G, (r,v') = G(r, v') — f@m(r, s)4(s)F ,*(s,r')d% (8-147a)

F ) = f{e}w(s, r') 4%(s)& _ (s, r) d3 (8-147h)

where Z is the Green'’s functionfor an electron in the normal metal
in the presence of the magnetic field

. 1 V 'I:EA 2 =~ ' '
{ion + 55 [V - FA0] 4 wfluter) = 50— 1) (s148)

If one solves the equations for F*, accurate to terms of order 44,
one finds that the equation (8-146) determining 4 is

4*(r) = —g Z f.‘?w(r, r’).‘?_w(r, r') 4*(r') d3r'

14 - - - -
- 52 [Fuls 196 Dm0 _o(en, 1) 465
x A*(1) 4*(m) d3s d3 d®m  (8-149)
The first term on the right-hand side of the form

fK(r, r') 4*(r') d3r (8-150a)
where the kernel K(r, r')
r, Z G (r, vV _ (r, 1) (8-150b)
is given by
/ 21
Kor — 1') = Ko(R) = [2—7’1%] 7 sinh (79"—1}]?) (8-150c)
F
and
g, — 1) = —= exp |ipeR sgn w, — mR (8-150d)
W 2r R _p Pr g n vp
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if A = 0. Since A is assumed to vary slowly over a coherence

length and @, (r, r') decreases exponentially for Ir = r'| > vpfw
~ & (w >~ d), a WKB-like approximation can be used to
include A and one finds

K(r,r') = Ky(r — r') exp 2E (r—r)-A (r)
c

(8-150e)
and

G, (r,r') = €§°(r—r)exp[.e(r——r) A(r)]
(8-150f)

The singularity of K, as r —1r' arises from the zero-range
two-body potential. If one cuts off the potential V,,. outside
the energy range —w, — w, (centered about the Fermi surface),

one has
N(0) f “ 1 tanh (ﬁf) de
o € 2

fKO(R) dR
w Bw,
N(O)[f 1t:a,nh (‘B—”e) de + f tanh = dx]
0 € 2 . Bewo %

1 . (T
= N(O)[———N(O)V + In (?“)] (8-151)

In the reduction we have used the equation determining kT, =
1/B.. By expanding the normal metal Green’s functions in powers
of the small quantity (e/c)(r — r’) * A(r) and assuming that 4(r)
varies slowly over a coherence length, Gor’kov obtains the
equation

1 . 2e 2
{% [v + z—C—A(“)]

where Gor’kov’s parameter A; is
7{(3)E)
12(mkp T )2

and {(z) is the Riemann zeta function.

Ag = (8-153)



Electromagnetic Properties of Superconductors 253

By introducing the *‘wave function”

_ A7)

h(r) T

(8-154)

one obtains the Ginsburg~Landau-like equation

Gl - 2] 2[(- 2wl -
(8-155)

where e* = 2¢. One can also calculate the current density

_ [ v R G,]
3o = [ (% = V6 ) T AmoE )|
(8-156)
to second order in 4 by the perturbation expansion used above
and one finds on using the relation between ¢ and 4:
ie* e*

2
J(r) = —5— ¥V + PVP*) — — A)|Y(r)|2  (8-157)

2m mc
as in the GL theory.

Recently, the derivation of Gor’kov has been extended to all
temperatures by Werthamer!3¢ and by Tewordt,!5® who continue
to assume the system is such that A and 4 vary slowly over a

. coherence length. Their equations are somewhat more compli-
cated than the GLG form, as one might expect. Gor’kov has
extended his treatment to include finite mean-free-path effects.
He finds the equations have the same form as above, except that
the ‘“‘mass’ m is increased relative to that of the pure material.



