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1 Introduction

Along the last decades topology has acquired an ever increasing relevance in
physics, as also witnessed by the recent Nobel prize in 2016 assigned to David
Thouless, Duncan Haldane e Michael Kosterlitz for topological phase transitions
and topological phases of matter [1]. Their work has explicitly shown that topo-
logical concepts are crucial to understand some states of matter. In particular
this emphasizes the great deal of attention that in last decades was devoted
to topology in condensed matter physics, where these topological states can
be realized in practice: not only Quantum Hall Effect, Berezinskii-Kosterlitz-
Thouless transition, but also, more recently, the topological insulators and the
Majorana Fermions (these latters having also been claimed recently to be of
practical relevance for quantum computation [2]).

One of the major examples of a topological concept in fundamental quantum
physics was introduced by Berry, who, contrary to a widespread belief, first
showed that the phase of wavefunctions can sometimes be a gauge-invariant
physical observable[4]. The Aharonov-Bohm effect (see, e.g., Ref. [3] p. 331)
provides an example in this sense. This entailed other related concepts like Berry
connection and Berry curvature. This latter, a gauge-invariant characteristic of
some quantum states, has been shown to be crucial to explain some solid state
phenomena [9], like, e.g., the Anomalous Hall Effect. Some of these effects are
tightly related to the fact that the Berry curvature in the band structure of
some solids induces additional terms in the velocity of the Bloch states. This is
the main topic at issue in the present notes. While Sect. 2 is freely inspired by
the treatment of Ref.[3], Sect. 3 and 4 are based on the approach described in
Ref. [9].

∗Notes for the Condensed Matter Theory course
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2 General introduction to the Berry Phase

2.1 The geometric phase

Let us consider a quantum system, described by a Hamiltonian H, which is
initially in an eigenstate with eigenvalue E. Let us consider the possibility
that this Hamiltonian is so slowly varied in time (so slowly that the adiabatic
theorem of quantum mechanics hold: if the system is in a quantum eigenstate
it will remain in the same eigenstate during the time evolution). This time
variation can be realized with a slow variation of its parameters, like, e.g., in the
Born-Oppenheimer treatment of electron-ion systems: in this case the electron
Hamiltonian and states vary through the parametric dependence on the slow
ionic coordinates.

During the time evolution the system will stay in the same eigenstate |n, t⟩
and the eigenvalue En(t) so that

H(t)|n, t⟩ = En(t) |n, t⟩. (1)

Any generic state at time t can be expanded as

|α, t⟩ =
∑
n

cn(t) e
i θn(t) |n, t⟩, (2)

with

θn(t) ≡ − 1

h̄

∫ t

0

En(t
′) dt′. (3)

To determine the coefficients cn(t) one can consider the Schrödinger equation

ih̄
∂

∂t
|α, t⟩ = H(t)|α, t⟩ (4)

and insert on both sides the expansion (2). On the left hand sides one obtains

ih̄
∂

∂t
|α, t⟩ = ih̄

∑
n

[
ċne

iθn(t)|n, t⟩+ cn(t)e
iθn(t)

∂

∂t
|n, t⟩+ i

∂θ(t)

∂t
cn(t)e

iθn(t)

]
= ih̄

∑
n

eiθn(t)
[
ċn(t)|n, t⟩+ cn(t)

∂

∂t
|n, t⟩+ i

∂θ(t)

∂t
cn(t)|n, t⟩

]
= ih̄

∑
n

eiθn(t)
[
ċn(t)|n, t⟩+ cn(t)

∂

∂t
|n, t⟩+ i

h̄
En(t)cn(t)|n, t⟩

]
(5)

having used Eq.(3) in the last step. On the other hand, the rhs of Eq.(4) is

H(t)|α, t⟩ =
∑
n

eiθn(t)En(t)cn(t)|n, t⟩. (6)

and cancels the corresponding term on the lhs of (5), so that the Schrödinger
equation can be recast as∑

n

eiθn(t)
[
ċn(t)|n, t⟩+ cn(t)

∂

∂t
|n, t⟩

]
= 0. (7)
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Projecting on the ⟨m, t| eigenstate one finds

ċm(t) = −
∑
n

cn(t) e
i(θn(t)−θm(t))⟨m, t| ∂

∂t
|n, t⟩. (8)

Splitting the summation in n = m and n ̸= m terms one gets

ċm(t) = −cm(t)⟨m, t| ∂
∂t

|m, t⟩ −
∑
n̸=m

cn(t)e
i(θn(t)−θm(t))⟨m, t| ∂

∂t
|n, t⟩. (9)

We assume now (and it can be shown, see Ref. [3]) that the time evolution can
be chosen slow enough to make the second term on the rhs negligible thereby
leading to

ċn(t) = −cn(t)⟨n, t|
∂

∂t
|n, t⟩. (10)

This equation can be solved to obtain

cn(t) = cn(0) exp

[
−
∫ t

0

⟨n, t′| ∂
∂t

|n, t′⟩dt′
]
≡ cn(0)e

iγn(t) (11)

The geometric phase

γn(t) = i

∫ t

0

⟨n, t′| ∂
∂t

|n, t′⟩dt′ (12)

can be shown to be real by imposing that the norm of the eigenstate is conserved
in time

0 =
∂

∂t
⟨n, t|n, t⟩ =

[
∂

∂t
⟨n, t|

]
|n, t⟩+ ⟨n, t|

[
∂

∂t
|n, t⟩

]
=

(
⟨n, t|

[
∂

∂t
|n, t⟩

])∗

+ ⟨n, t|
[
∂

∂t
|n, t⟩

]
. (13)

To summarize, one finds that, when the Hamiltonian is adiabatically evolved in
time, ψn(t), the n−th component of the wavefunction |α, t⟩, not only acquires
the usual dynamical phase θn(t) related to the n−th energy eigenvalue En (see
Eq.(3), but also acquires a geometrical phase factor γn(t)

|ψn(t)⟩ = eiγn(t) exp

[
− i

h̄

∫ t

0

En(t
′)dt′

]
|n, t⟩ (14)

2.2 The Berry phase

Let us now make it explicit the fact that the Hamiltonian depends on time
through a set of N parameters ξi(t) (with i = 1, ..., N). We define a vector
ξ(t) having ξi(t) as components so that H = H(ξ), ξ = ξ(t). Then also the
eigenvalues and eigenvectors depend on t via ξ(t): |n, t⟩ = |n(ξ)⟩ and En(t) =
En(ξ) so that

H(ξ)|n(ξ)⟩ = En(ξ)|n(ξ)⟩ (15)

d

dt
|n, t⟩ =

∂

∂ξ
|n(ξ)⟩ · dξ

dt
(16)
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Eq.(12) can then be rewritten as

γn(C) =

∫
C

i|⟨n(ξ)| ∂
∂ξ

|n(ξ)⟩dξ ≡
∫
C

An(ξ)dξ (17)

where C is a path ξ(t′) (cf. Eq.(12) in the parameter space starting in ξ(t = 0)
and ending in ξ(t = T ). An(ξ) is a vector valued function in the same space.
This vector is called the Berry connection or the Berry vector potential.
Obviously, An(ξ) is gauge dependent: If we make a gauge transformation

|n(ξ)⟩ → eiζ(ξ)|n(ξ⟩ (18)

with ζ(ξ) an arbitrary smooth function, then An transforms as vector potentials
usually do

An(ξ) → An(ξ)−
∂

∂ξ
ζ(ξ). (19)

Consequently, the phase γn given by Eq. (17) will be changed by ζ(ξ(T )) −
ζ(ξ(0)), after the transformation, where ξ(0)) and ξ(T )) are the initial and final
points of the path C. This observation had led to conclude that one can always
choose a suitable ζ(ξ) such that γn accumulated along the path C is canceled
out, leaving Eq. (14) with only the dynamical phase. Because of this, the
phase γn has long been deemed unimportant and it was usually neglected in the
theoretical treatment of time-dependent problems. This conclusion remained
unchallenged until Berry [4] reconsidered the cyclic evolution of the system
along a closed path C with ξ(0)) = ξ(T )). The phase choice made earlier on
the basis function |n(ξ)⟩ requires eiζ(ξ) in the gauge transformation Eq. (18) to
be single valued,

eiζ(ξ(0))|n(ξ(0))⟩ = eiζ(ξ(T ))|n(ξ(T ))⟩
which implies ζ(ξ(T ))− ζ(ξ(0)) = 2π×integer. This shows that γn can be only
changed by an integer multiple of 2π under the gauge transformation Eq. (18)
and it cannot be removed. Therefore for a closed path, γn becomes a gauge-
invariant physical quantity, now known as the Berry phase

γn(C) =

∮
C

dξ ·An(ξ). (20)

From the above definition, we can see that the Berry phase only depends on
the geometric aspect of the closed path and is independent of how ξ(t) varies
in time. The explicit time dependence is thus not essential in the description of
the Berry phase and will be dropped in the following discussion.

The definition of the Berry phase as a path integral over a closed curve in
Eq. (20), naturally suggests the use of Stokes’ theorem to define γn in terms of
a surface integral

γn(C) =

∫
S

ds ·Ωn(ξ). (21)

where S is an arbitrary surface encircled by the path C and in the case of a
three dimensional parameter space (N = 3)

Ωn(ξ) ≡ ∇ξ ×An(ξ). (22)
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Eq. (22) only holds for N = 3, while a more general form can be given in terms
of gauge-field tensor in all other cases [6, 9]

Ωn
µν(ξ) =

∂

∂ξµ
An

ν (ξ)−
∂

∂ξν
An

µ(ξ)

= i

[
⟨∂n(ξ)
∂ξµ

|∂n(ξ)
∂ξν

⟩ − (ν ⇀↽ µ)

]
(23)

Ωn(ξ) is termed Berry curvature and for N = 3 can be interpreted as a ‘mag-
netic field’ in the 3D parameter space. It is also worth noticing that compared
to the Berry phase which is always associated with a closed path, the Berry
curvature is truly a local quantity in the ξ parameter space. It provides a
local description of the geometric properties of this parameter space, which, we
will see, may have important consequences in electron transport properties.

In Appendix A we also derive an expression for calculating the Berry cur-
vature, which highlights the relevance of degeneracy points in the electronic
spectrum such that En(ξ) = Em(ξ), (see Eq.(49)). In this case the Berry
curvature Ωn(ξ), and therefore the Berry phase γn(C), will be dominated by
these points, regardless of whether or not the path C followed by the parameter
vector ξ includes these points. These degenerate points are ‘singularities’ that
contribute significantly to the integral of the curve containing them, even if the
curve (as well as the surface enclosed by it) does not include such points. This
means, ultimately, that the phase of the system will undergo a measurable effect
resulting from possible states of energy degeneration, even if the system itself
never finds itself in such degenerate states.

A very important fact is finally worth being stressed again: The Berry phase
(i.e. the geometric phase on a closed path) is a gauge-invariant quantity,
while the geometric phase on open paths of Eq. (12,14) is a gauge-dependent
quantity. Thus, while the Berry phase is an intrinsic and measurable quantity,
the generic geometric phase is not and can, for instance, always be eliminated
by a suitable choice of the gauge vector potential A(t) (this particular choice
is usually called the ‘parallel transport gauge’ and correspond to the choice
⟨n, t| ∂∂t |n, t⟩ = 0 at any t). At first sight this choice seems at odds with a non-
vanishing Berry phase because the geometric phase in Eq. (12) or (17) vanishes.
However it is not so (see also Sect. 3.1 in Ref.[6] and Appendix in Ref.[9]): For a
closed path in the parameter space, i.e., ξ(T ) = ξ(0), there is no guarantee that
the phase at the final time tf = T is the same as the phase at the beginning
t0 = 0. In other words, under the parallel transport condition, even though
|n(ξ(t))⟩ is uniquely determined as a function of t, it can still be a multi-valued
function of ξ(t) so that |n(ξ(T ))⟩ ̸= |n(ξ(0))⟩. In particular the phase difference
γn in |n(ξ(T ))⟩ = e−iγn |n(ξ(0))⟩ is precisely the Berry phase of the closed path.
In fact, this can be considered as another definition of the Berry phase.
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3 Berry phase in Bloch bands

Above we introduced the basic concepts of the Berry phase for a generic sys-
tem described by a parameter-dependent Hamiltonian. We now consider its
realization in crystalline solids. As we shall see, the band structure of crystals
provides a natural platform to investigate the occurrence of the Berry phase
effect. Within the independent electron approximation, the band structure of a
crystal is determined by the following Hamiltonian for a single electron:

H =
p̂2

2m
+ V (r) (24)

where V (r+RB) = V (r) is the periodic potential with RB any Bravais lattice
vector. According to Bloch’s theorem, the eigenstates of a periodic Hamiltonian
satisfy the following condition

ψnk(r+RB) = eik·RBψnk(r) (25)

where n is the band index and k is the crystal momentum, which resides in the
Brillouin zone. Thus the system is described by a k-independent Hamiltonian
with a k-dependent (boundary) condition Eq. (25). To be coherent with the
general formalism of the Berry phase, we move to the momentum dependent
Hamiltonian [cf. Eq. (8.48) in Ref. [7]]

H(k) =
(p̂+ h̄k)2

2m
+ V (r) (26)

having unk(r) as eigenvectors, H(k)unk(r) = Ekunk(r), and momentum inde-
pendent boundary condition unk(r) = unk(r +RB). We can thus identify the
Brillouin zone as the parameter space of the transformed Hamiltonian H(k) and
unk(r) as the basis function (i.e. we here identify k with ξ). Now, if k is forced
to vary along a path in the momentum space, then the Bloch state at time t
will pick up a phase (cf. Eq.(17))1

γn = i

∫ kf

ki

dk · ⟨un(k)|∇k|un(k)⟩. (27)

Remember that γn is in general gauge-dependent unless the path C is closed to
make γn a gauge-invariant quantity with physical significance (the Berry phase)

γn = i

∮
C

dk · ⟨un(k)|∇k|un(k)⟩. (28)

According to our previous discussion, for each energy band n we can also
define in any point k of the crystal momentum space a Berry curvature

Ωn(k) = ∇k × ⟨un(k)|i∇k|un(k)⟩ (29)

1To be coherent with the general treatment reported in Sect. 2, here we keep using the
Dirac notation for basis |un(k)⟩ so that unk(r) = ⟨r|un(k)⟩.
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This Berry curvature is an intrinsic property of the band structure because it
only depends on the wave function |un(k)⟩. It is nonzero in a wide range of
materials, in particular, crystals with broken time-reversal or inversion sym-
metry (see below). In fact, once we have introduced the concept of the Berry
curvature, a closed loop is not necessary because the Berry curvature itself is
a local gauge-invariant quantity. It is now well recognized that information on
the Berry curvature is essential in a proper description of the dynamics of Bloch
electrons, which has various effects on transport and thermodynamic properties
of crystals.

4 Bloch electron dynamics in an electric field

The dynamics of Bloch electrons under the perturbation of an electric field is
one of the oldest problems in solid-state physics. It is usually understood that
while the electric field can drive electron motion in momentum space, it does not
appear in the electron velocity; the latter is simply given by (see, for example,
Chap. 8 and Appendix E of Ref. [7])

vn(k) =
1

h̄

∂En(k)

∂k
(30)

Through recent progress on the semiclassical dynamics of Bloch electrons it has
been made increasingly clear that this description is incomplete. In the presence
of an electric field, an electron can acquire an anomalous velocity proportional to
the Berry curvature of the band [8]. This anomalous velocity is responsible for
a number of peculiar transport phenomena, like, e.g. the anomalous Hall effect.
To study the corrections induced on the Bloch electron velocity by the Berry
curvature there are various approaches. In the following we use the approach of
Xiao et al. [see Sect. II.A and Appendix in Ref. [9]]2. An alternative approach
is reported in Ref. [10].

4.1 Adiabatic evolution of Bloch states and anomalous ve-
locity of Bloch electrons

In order to identify additional contributions to the velocity of Bloch electrons
in Eq. (30), we need to identify how Bloch states are modified by an adiabatic
modification of the Hamiltonian. In particular one can see that under an adia-
batic time evolution of the Hamiltonian H(k, t), the m-th eigenvalue |um(k, t)⟩,
up to first order in the rate of change of H(k, t), becomes

|um(k, t)⟩ = |um(k)⟩ − ih̄
∑
n̸=m

|un(k)⟩⟨un(k)| ∂∂t |um(k, t)⟩
Em(t)− En(t)

. (31)

2We point out that in order to be coherent with the notation of the previous sections and
the notation in the book by Ashcroft and Mermin [7] the crystal momentum q in the paper
by Xiao et al. [9] is called k here
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where |um(k)⟩ ≡ |um(k, 0)⟩. This expression is explicitly derived in the Ap-
pendix of Ref. [9]. This expression as it is is derived in a specific gauge, the
so-called parallel transport gauge. A clear discussion on this choice and its re-
lation with other possible gauge choices, is in the Sec. 3.1 of Ref. [6]. Since,
however, we will only use this expression for the calculation of gauge-invariant
quantities, this choice is immaterial here and we skip further details on this
interesting issue.

The adiabatic time evolution of the eigenstates |um(k, t)⟩ of H(k, t) induces
important modifications on the expression of velocity. The velocity operator
in the k representation is given by [see, e.g., Appendix E of Ref. [7]]

v̂n(k) =
∂H(k, t)

h̄∂k
=

h̄

m
(−i∇+ k). (32)

When averaged over the eigenstates |um(k, t)⟩ given by Eq.(31) the velocity
acquires additional terms

vm(k) =
∂Em(k)

∂h̄k
− i

∑
n̸=m

[
⟨um(k|∂H∂k |un(k)⟩⟨un(k)| ∂∂t |um(k, t)⟩

Em(t)− En(t)
− c.c.

]
. (33)

Then one can use the identity
∑

n̸=m |un(k)⟩⟨un(k| = 1 − |um(k)⟩⟨um(k| and
the fact that

⟨um(k|∂H(k, t)

∂k
|un(k)⟩ = (Em − En)⟨

∂um(k)

∂k
|un(k)⟩ (34)

(we demonstrate this relation below).3 Thus Eq. (33) becomes

vm(k) =
∂Em(k)

∂h̄k
− i

[
⟨∂um(k)

∂k
|∂um(k, t)

∂t
⟩

− ⟨∂um(k)

∂k
|um(k)⟩⟨um(k)|∂um(k, t)

∂t
⟩ − c.c.

]
. (35)

The second term in the square bracket in the rhs is real because it is the product
of two purely imaginary terms (this can be shown by by the same procedure

3We here briefly derive Eq. (34). We restart from the Schrödinger equation in k-
representation

H(k)|unk⟩ = Enk|unk⟩
and differentiate both sides with respect to k

∂H(k)

∂k
|unk⟩+H(k)

∂

∂k
|unk⟩ =

∂Enk

∂k
|unk⟩+ Enk

∂

∂k
|unk⟩.

Projecting on the ⟨umk| (m ̸= n) state one obtains

⟨umk|
∂H(k)

∂k
|unk⟩+ ⟨umk|H(k)

∂

∂k
|unk⟩ = Enk⟨umk|

∂

∂k
|unk⟩.

from which Eq. (34) is easily obtained.
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leading to Eq. (13). See also the discussion in the Appendix after Eq. (46)).
Therefore by subtracting the complex conjugate it is canceled

vm(k) =
∂Em(k)

∂h̄k
− i

[
⟨∂um(k)

∂k
|∂um(k, t)

∂t
⟩ − ⟨∂um(k, t)

∂t
|∂um(k)

∂k
⟩
]
. (36)

The second term in the rhs can be compared with Eq.(23) to recognize that
it is the Berry curvature for a parameter space of the Hamiltonian given by
ξ(t) ≡ (k, t)

vm(k) =
∂Em(k)

∂h̄k
− Ωm

kt. (37)

This is a major result because it shows that the longstanding textbook relation
Eq. (30) is incomplete and the second term in the rhs of Eq.(37) has also to be
considered under rather general conditions that will be discussed at the end of
the next subsection.

4.2 The anomalous Hall effect

The above modification of the velocity induces a modification to the electrical
current when an external uniform electric field is present. Consider a crystal
under the perturbation of a weak electric field E, which enters the Hamiltonian
by coupling to the electrostatic potential ϕ(r). A uniform E means that ϕ(r)
varies linearly in space and breaks the translational symmetry of the crystal so
that Bloch’s theorem can no longer be applied. To avoid this difficulty, one can
let the electric field enter through a uniform vector potential, E(t) = − ∂

∂tA(t),
that changes over time. In this way the external vector potential is a spacially
uniform vector and the periodicity of the Bravais lattice is preserved. Using the
Peierls (minimal) substitution, the Hamiltonian is written as

H(t) =
(p̂+ eA(t))2

2m
+ V (r) (38)

Transforming to the k representation, one has

H(k, t) ≡ H(k+
e

h̄
A(t))

Let us introduce the gauge-invariant crystal momentum

k̃ = k+
e

h̄
A(t). (39)

The parameter-dependent Hamiltonian can be simply written as H(k̃(k, t)).
Hence, the eigenstates of the time-dependent Hamiltonian can be labeled by a
single parameter k̃. Moreover, since A(t) preserves the translational symmetry,
the Bloch momentum k is still a good quantum number and it is a constant of
motion k̇ = 0. Differentiating in time Eq.(39) it then follows that k̃ satisfies the
following equation of motion:

˙̃
k =

e

h̄
Ȧ(t) = − e

h̄
E (40)
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This is the usual expression for the time derivative of the crystal momentum

k. On the other hand, since ∂/∂kα = ∂/∂k̃α and d/dt =
∑

α
˙̃
kα∂/∂k̃α =

−(e/h̄)
∑

αEα∂/∂kα, then, taking into account Eqs.(36,37), one finds

vm(k) =
∂Em(k)

∂h̄k
− e

h̄
E×Ωm(k) (41)

where Ωm(k) is the Berry curvature of the m-th band. To be more explicit, let
us consider the case of a two-dimensional electron system so that the parameter
space of the Hamiltonian is spanned by a three-dimensional vector [k̃ = (k, t) =
(kx, ky, t)]. Then Ωm(k) = i⟨∇kum(k)| × |∇kum(k)⟩ (see Eq. (45) in the
Appendix) is given by a vector perpendicular to the kx − ky plane:

Hz ≡ i

[
⟨∂um(k)

∂kx
|∂um(k)

∂ky
⟩ − ⟨∂um(k)

∂ky
|∂um(k)

∂kx
⟩
]

. Then the semiclassical equation for the velocity along y becomes

vy(k) =
∂Em(k)

∂h̄ky
+
e

h̄
ExHz. (42)

We can see that, in addition to the usual band dispersion contribution, an extra
term, previously known as anomalous velocity, appears ‘as if a magnetic field
perpendicular to the kx−ky plane were present’ (cf. Eqs. (12.45) and (12.46) in
ref. [7]). This additional term is always transverse to the electric field driving
the current along x, and will give rise to a Hall current (Anomalous Hall Effect).
According to Ref. [9], Sect. III.D, the anomalous velocity contribution is the
most important (and intrinsic) mechanism leading to the Anomalous Hall Effect,
an Hall effect taking place in ferromagnetic materials under the application of
an electric field only (that is without an external magnetic field). Historically
the anomalous velocity was obtained by Karplus and Luttinger [11] and Kohn
and Luttinger [12], while its relation to the Berry phase was realized much later.

The velocity formula Eq. (41) [as well as Eqs. (36) and (37)] reveals that,
in addition to the band energy, the Berry curvature of the Bloch bands is also
required for a complete description of the electron dynamics. However, the
conventional formula, Eq. (32) has been successful in describing many electronic
properties in the past. It is thus important to know under what conditions the
Berry curvature term can be neglected and when should instead it be considered.
The general form of the Berry curvature Ωm(k) can be obtained via symmetry
analysis. The velocity formula (41) should be invariant under time-reversal and
spatial inversion operations if the unperturbed system has these symmetries.
Under time reversal, vn and k change sign while E is fixed. Under spatial
inversion, vn, k , and E change sign. If the system has time-reversal symmetry,
the symmetry condition on Eq. (41)requires that

Ωn(−k) = −Ωn(k). (43)

If the system has spatial inversion symmetry, then

Ωn(−k) = Ωn(k). (44)
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Therefore, for crystals with simultaneous time-reversal and spatial inversion
symmetry the Berry curvature vanishes identically throughout the Brillouin
zone. In this case Eq. (41) reduces to the simple expression (32). However, in
systems with broken either time-reversal or inversion symmetries, their proper
description requires the use of the full velocity formula (41).

A The explicit expression of the Berry curva-
ture

To complete this general presentation of the Berry phase, the Berry connection,
and the Berry curvature, we now recast the Berry curvature in a more convenient
form for explicit calculations.

Ωn(ξ) ≡ ∂

∂ξ
×An(ξ) = i

(
∂

∂ξ
× ⟨n(ξ)|

[
∂

∂ξ
|n(ξ)⟩

])
= i

[
∂

∂ξ
⟨n(ξ)|

]
×

[
∂

∂ξ
|n(ξ)⟩

]
+ ⟨n(ξ)|

[
∂

∂ξ
× ∂

∂ξ
|n(ξ)⟩

]
= i

[
∂

∂ξ
⟨n(ξ)|

]
×

[
∂

∂ξ
|n(ξ)⟩

]
(45)

where use has been done of the fact that the rotor of a gradient vanishes. In-
serting a complete basis set one obtains

Ωn(ξ) = i
∑
m̸=n

[
∂

∂ξ
⟨n(ξ)|

]
|m(ξ)⟩ × ⟨m(ξ)|

[
∂

∂ξ
|n(ξ)⟩

]
(46)

Them = n vanishes because, taking the gradient of the normalization condition,

similarly to Eq. (13), one can show that
[

∂
∂ξ ⟨n(ξ)|

]
|n(ξ)⟩ = −⟨n(ξ)|

[
∂
∂ξ |n(ξ)⟩

]
.

Then for this term the vector product acts between two parallel vectors and
vanishes. The terms of the Eq. (46) can be obtained by differentiating Eq.(1)
and scalarly multiplying by the ⟨m(ξ)| bra

∂

∂ξ
(H(ξ)|nξ⟩) = ∂

∂ξ
(En(ξ) |n(ξ)⟩) (47)

⟨m(ξ)|
(
∂

∂ξ
H(ξ)

)
|nξ⟩+ ⟨m(ξ)|H(ξ)

(
∂

∂ξ
|nξ⟩

)
=

(
∂

∂ξ
En(ξ)

)
⟨m(ξ)|n(ξ)⟩+ En(ξ)⟨m(ξ)

(
∂

∂ξ
|n(ξ)⟩

)
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Then one gets

⟨m(ξ)|
(
∂

∂ξ
|nξ⟩

)
=

⟨m(ξ)|
(

∂
∂ξH(ξ)

)
|nξ⟩

En(ξ)− Em(ξ)
(48)

Inserting Eq.(48) and its conjugated in Eq.(46) one finally obtains

Ωn(ξ) = i
∑
m̸=n

⟨m(ξ)|
(

∂
∂ξH(ξ)

)
|n(ξ)⟩ × ⟨n(ξ)|

(
∂
∂ξH(ξ)

)
|m(ξ)⟩

(En(ξ)− Em(ξ))
2 . (49)

This summation formula has the advantage that no differentiation on the wave
function is involved and therefore it can be evaluated under any gauge choice.
This property is particularly useful for numerical calculations, in which the con-
dition of a smooth phase choice of the eigenstates is not guaranteed in standard
diagonalization algorithms. It has been used to evaluate the Berry curvature
in crystals with the eigenfunctions supplied from first-principles band structure
calculations.

Furthermore, Eq.(49) reveals a characteristic of the Berry phase that is any-
thing but trivial: if there are points of degeneration of the eigenvalue En(ξ)
in the parameter space, i.e., there are states such that En(ξ) = Em(ξ), then
the Berry curvature Ωn(ξ), and therefore the Berry phase γn(C), will be dom-
inated by these points, regardless of whether or not the path C followed by the
parameter vector ξ includes these points.
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