WRITTEN EXAMINATION OF 24/06/2024 (Profs. M. Grilli and A. Polimeni) Exercise 1

Consider two compound lattices with cubic symmetry and chemical formula XY and WZ, where XY and WZ form a two-atoms base.

When measuring the X-ray diffraction pattern of the sample using the powder method by a radiation with λ =0.154056 nm, seven diffraction peaks are obtained with the scattering angle 2 θ as shown below.

XY) 2 θ (°): 23.3281, 33.2272, 40.9960, 47.7004, 53.7535, 59.3687, 69.7562 WZ) 2 θ (°): 30.8254, 35.7432, 51.4434, 61.1826, 64.2191, 75.7251, 83.9551. 1) Identify the cubic lattice type and label each diffraction peak using the Miller indexing. Compute the average lattice parameter *a*.

2) Indicate which of the above peaks would disappear if the atoms were the same and one atom were positioned in the origin (0,0,0) and the other atom were positioned at *a* (1/4,1/4,1/4).

3) Evaluate the Debye wavevector associated only to the acoustic modes for the two crystals.

Exercise 2

Given a simple cubic monoatomic lattice with two valence orbitals d_{xz} and p_y and using the tight-binding approximation considering the first-neighbors interaction, only:

i) write the analytic expression of the electron bands in terms of the overlap (hopping) integrals $\gamma_{pp}^{x,y,z}$, $\gamma_{dd}^{x,y,z}$, $\gamma_{pd}^{x,y,z}$ of the various orbitals along the *x*, *y* and *z* directions, specifying and neglecting those that are zero by symmetry. Also establish the sign and which are larger or smaller in absolute value. The terms $(E_d - \beta_d) > (E_p - \beta_p)$ are also known and $(E_d - \beta_d) - (E_p - \beta_p) \gg \gamma$ for any γ .

ii) Assume $(E_d - \beta_d) - (E_p - \beta_p) = 5 \text{ eV}$, and the values $|\gamma_1|=0.5 \text{ eV}$ for the large overlap integrals and $|\gamma_2|=0.1 \text{ eV}$ for the small ones. Knowing that there are two valence electrons per atom, find the k points in the Brillouin zone where the energy for the optical absorption is minimal and its numerical value.

For the sake of clarity, the p and d orbitals are drawn separately, but in every atomic site of the 3D cubic lattice both orbitals are present.

SOLUTIONS

Exercise 1

1) XY is a simple cubic lattice

n	2θ (°)	d (nm)	$(d_1/d_i)^2$	(hkl)	$(h_{1n}^2 + k_n^2 + l_n^2)/(h_1^2 + k_1^2 + l_1^2)$	<i>a</i> (nm)
1	23.32814	0.381	1	100	1	0.381
2	33.22723	0.26941	2	110	2	0.381
3	40.99595	0.21997	3	111	3	0.381
4	47.70036	0.1905	4	200	4	0.381
5	53.75354	0.17039	5	210	5	0.381
6	59.36868	0.15554	6	211	6	0.381
7	69.75619	0.1347	8	220	8	0.381

where $d = \lambda / (2 \sin \theta)$

WZ is a face centered cubic lattice

n	2θ (°)	d (nm)	$(d_1/d_n)^2$	(hkl)	$(h_n^2 + k_n^2 + l_n^2)/(h_1^2 + k_1^2 + l_1^2)$	<i>a</i> (nm)
1	30.82539	0.28983	0.99997	111	1	0.502
2	35.74315	0.251	1.3333	200	1.33333	0.502
3	51.44338	0.17748	2.6666	220	2.66667	0.502
4	61.18255	0.15136	3.66657	311	3.66667	0.502
5	64.21906	0.14491	3.9999	222	4	0.502
6	75.72505	0.1255	5.3332	400	5.33333	0.502
7	83.95507	0.11517	6.33317	331	6.33333	0.502

where $d = \lambda / (2 \sin \theta)$

2) For the XY lattice, if we set the basis as $\rho_1 = (0,0,0)$ and $\rho_2 = a(1/4,1/4,1/4)$ and the reciprocal lattice vectors of the SC given by $G = h g_1 + k g_2 + l g_3$, where $g_1 = 2\pi/a(1,0,0)$, $g_2 = 2\pi/a(0,1,0)$, $g_3 = 2\pi/a(0,0,1)$, the basis structure factor is equal to $[1+e^{-i\pi/2(h+k+l)}]$. This factor is zero for (h+k+l)=2(2n+1). The disappearing peaks are those for which $(h+k+l)=2, 6, \ldots$, namely the (110) and the (200) peaks.

Likewise for the WZ lattice, if we set the basis as $\rho_1 = (0,0,0)$ and $\rho_2 = a(1/4,1/4,1/4)$ and the reciprocal lattice vectors of the SC given by $G = h g_1 + k g_2 + l g_3$, where $g_1 = 2\pi/a(-1,1,1)$, $g_2 = 2\pi/a(1,-1,1)$, $g_3 = 2\pi/a(1,1,-1)$, the basis structure factor is equal to $[1+e^{-1}]^{1/2(h+k+1)}$. Also in this case, this factor is zero for (h+k+1)=2(2n+1). The disappearing peaks are those for which (h+k+1)=2, 6, ..., namely the (200) and the (222) planes. 3) $q_D = \sqrt[3]{6\pi^2 n}$. For XY $n=1/a^3$ and thus $q_D=10.23$ nm⁻¹. For WZ $n=4/a^3$ and thus $q_D=12.30$ nm⁻¹.

Exercise 2

i) For symmetry reasons the overlap integrals between p and d orbitals are zero. Moreover $\gamma_{dd}^{x} = \gamma_{dd}^{z} < 0; \quad \gamma_{dd}^{y} > 0; \quad \gamma_{pp}^{x} = \gamma_{pp}^{z} > 0; \quad \gamma_{pp}^{y} < 0$ $\left|\gamma_{dd}^{x}\right| = \left|\gamma_{dd}^{z}\right| \approx \left|\gamma_{pp}^{y}\right| > \gamma_{pp}^{x} = \gamma_{pp}^{z} \approx \gamma_{dd}^{y}$

Two bands are formed each of pure p or d character

$$E_{d}(\vec{K}) = E_{d} - \beta_{d} + 2|\gamma_{dd}^{xz}|(\cos(k_{x}a) + \cos(k_{z}a)) - 2\gamma_{dd}^{y}\cos(k_{y}a)$$
$$E_{p}(\vec{K}) = E_{p} - \beta_{p} - 2\gamma_{pp}^{xz}(\cos(k_{x}a) + \cos(k_{z}a)) + 2|\gamma_{pp}^{y}|\cos(k_{y}a)$$
Since the level difference largely exceeds the oveerlap integrals $(E_{d} - \beta_{d}) - (E_{p} - \beta_{p}) >> \gamma$

the two bands do not overlap in energy.

ii) If two electrons per atom are present, the lower band $E_p(k)$ is completely filled. The chemical potential then falls in the middle (at T=0) of the gap between the two bands. The minimum of the upper band occurs at $K_{min}=(\pi/a)(1,0,1)$, as well as the maximum of the lower p band $K_{max}=(\pi/a)(1,0,1)$. The gap is therefore direct ($K_{min}=K_{max}$) and is

$$E_{d}\left(\vec{K}_{\min}\right) - E_{p}\left(\vec{K}_{\max}\right) = \left(E_{d} - \beta_{d} - 4\left|\gamma_{dd}^{xz}\right| - 2\gamma_{dd}^{y}\right) - \left(E_{p} - \beta_{p} + 4\gamma_{pp}^{xz} + 2\left|\gamma_{pp}^{y}\right|\right) = 5 - 4 \times 0.5 - 2 \times 0.1 - 4 \times 0.1 - 2 \times 0.5 = 1.4eV$$