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Lattice vibration dispersion curve for KBr. The transverse branches are doubly degenerate.

4.2 Second quantization and phonons

We now turn to an clementary excitation view of lattice vibrational properties by associ-
ating phonons with the vibrational modes. Phonons are viewed as being particle-like and
wave-like in analogy with electromagnetic radiation. We begin by considering a simple
one-dimensional harmonic oscillator, satisfying the equation

mi = ~yx. (4.41)

The solution is x(7) = xpe™™ where @ = V7 /m for spring constant y and mass m. If we
take a quantum view starting with the Hamiltonian

oS
= El + 5},\' s (4.42)
then the energy levels are
I
Ey =ho (’1 + i) (ni=10:1:2.....: (4.43)

It is convenient to take a second quantized view of this problem using creation and
annihilation operators. The standard approach is to form a linear combination of the coor-
dinate and momentum variables, x and P, and form new variables, @ and a”, such that these
variables satisfy the commutation relation

la.a’] = 1. (4.44)
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The combinations of x and p for a and a' are

1

a= m(p — imwx) (4.45)
and
” 1 _
al = B (p + imax). (4.46)

This choice satisfies Eq. (4.44) since [x,p] = ifi . Replacing x and p in Eq. (4.42) by
expressing them in terms of @ and a’, using Egs. (4.45) and (4.46), yiclds

1
H= Eﬁw(aat +a'a). (4.47)

A matrix representation for « and @' can be introduced based on labeling states by the
index n. We have the following eigenvalue equations for the harmonic oscillator

aln) = ~nin—1) (4.48)
and
a lny=vn+1|n+1), (4.49)

which are consistent with Eq. (4.44). Tn addition, Egs. (4.48) and (4.49) give
a‘aln) = nln), (4.50)

and then, using Eq. (4.47), we have
I
H|n) = (n - E) hiw |n} = Ey |n). (4.51)

From these essential features of the simple one-dimensional harmonic oscillator, we can
propose a picture of excitations involving the creation and destruction of quanta in various
states and the view of representing a state using the occupation number corresponding to
specific quanta. This concept involves the setting up of 2 many-body state by operating on
a vacuum state with creation and destruction operators to increase or decrease the number
of particles in a given state. The state vector Wy, . ... TEpresents a state with »y particles
in state 1, n particles in state 2, and so on. The creation operators aj repeatedly acting on
the vacuum state |0) can produce this state vector. Also, when the destruction operator a;
opcrates on the state vector, it destroys a particle in the ith state. There is an overall factor
such that

“ile.ng.....n,.... — -\/"—i\yn[.n;.....n; o) (4.52)
a;' ‘Pm.ng.....n;... =N+ |q’n|.n-_.~ ..... ni+1...s (4.53)

arﬂiq’m.ng,....n,... = ”iq‘nl.n:,....n;u..- (4.54)
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Finite linear chain with nearest-neighbor interactions.

Therefore, the operator #; = a:a,- measures the number of particles in the ith state, and it
is called the number operator.

Using this short description of second quantization and the occupation number represen-
tation for the state of a system, we can go beyond the simple harmonic oscillator and treat
the model of interacting atoms, which we considered before, to represent lattice vibrations
m a one-dimensional solid. This model uses a linear chain of N atoms of length L = Na
with nearest-neighbor interactions (Fig. 4.9). Unlike the harmonic oscillator case, the “ex-
tension of the springs™ depends on the relative displacements of the atoms. Hence, a simple
real-space Hamiltonian composed of a combination of the squares of position and momen-
tum is not possible. However, a decoupling occurs if we use a Fourier transformation of
the original Hamiltonian, and this will lead us to the form we need.

We begin with the Hamiltonian containing the kinetic and potential energies expressed
i terms of real-space momenta p,, and coordinates &,.

. 2 I x ¥ 2
H= M ;Pn T 57 ;(snu - &), (4.55)
where

[éml’n’] = iRl . (4.56)

As stated above, the desired form for the Hamiltonian is # = ¥, H.
To accomplish this, we Fourter-transform the coordinate

1 2
= —= ) &G, 4.57
Cn \/.'V Xk: -k . ( )
and
o i "
R @58)
J‘_ n
Using PBCs,
2% py 4
{ O it Rl 4.59
Na L ( )

with —% < ¢ < ¥. Since &, is Hermitian,

.

=&, (4.60)
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The momentum py that is canonicall

the Lagrangian formalism. For the Lagrangian

L&, &),

the canonically conjugate momentum becomes

Using

al
Pr = AR
deg

Zei(lﬂ‘k’)lm — N5k+k’.0.~

"

then the kinetic energy is 7, with

M .
TE S ;@m

? Z ékck’(}('“* Vnia
k& on

=2 ee.
oo

Similarly, the potential energy (PE) becomes

1 ¥ "
PE=3y D Gnr1 ~&)F =7 Y &4l ~ cos ka),
n k

and the Lagrangian has the form

o Zg{_k -y Z‘*“-ﬂ“ — coska).

Hence, the conjugate momentum is

Using Eq. (4.58),

and we have

ar
= — = MF_
Pk 2% C—k
de “i(— k)na

¥ conjugate to & is not obvious. To find it, we use

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)
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thus
[); =Pk (4.()7)

Finally, the Hamiltonian (using the results for the vibration frequency obtained in the last
scection) is

Lo | pro—k _
H= s L 5 + 2y (1 — cos ka) &ié—x (4.68)
Mwi
| Mw}f o
=2 | e + —5 %k |- (4.69)
k

and

H= ZH‘.
k

which was our objective.
Using the relations above, we can show that

[k pie] = ihidg o, (4.70)

If we now define

3 1 SF o
= W(J‘*Imkﬂ —ipg) (4.71)

=

and
O ) (4.72)
dy = ~———(Mwpt P, 4,
A Vv 2’?.‘\/[(:)& o P£
then
lag.al,] = o (4.73)
and
la.ap] = laj,a},] = 0. (4.74)
FFollowing our carlier description for the simple harmonic oscillator, we now have
+ 1
H= Zﬁw/,- Qg + 5
= 2
and
2y k 4.75
o = | —(1 — cos ka). TS
) V M( cos ka) ( )
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We can now make the comparison with the previous description for the simple harmonic
oscillator. The operators a,'( and ay, create and destroy quanta (phonons) in the state £. The
number operator i = a;ak measures the number of phonons n in the state &. The energy

1
Ey = (nk - ;) Fiewy

is viewed as the excitation energy of ny phonons of energy fiy; plus the ground-state encrgy
(zero-point motion zlhwk). The total energy of the vibrating system of cores is the ground-
state energy plus the energy of a group of independent phonons excited above the ground
state.

For a given £, there is a quantized vibrational or sound wave mode of wavevector & and
energy fiwp. A sound wave with wavevector £ is described by n; phonons excited above
the ground state. Thercfore, a statement in common use that a phonon is a quantized sound
wave is incorrect. It takes n; phonons to describe a sound wave. The many-body state

|n;,, +Mks, ...} for phonons in different k-states can be constructed using creation operators
acting on the vacuum |0),

Inkys i) = (@ )™ (@] )™ ... [0, (4.76)

The gencralization of the one-dimensional case with vibrating cores (in the harmonic
approximation) with » atoms per cell in ¢ dimensions leads to the Hamiltonian

H= Zha),m (a;ka,zk -+
ik

2 |

) 3 (4.77)

where A is the phonon branch index (A= 1,2,...,d x r) and wyy are the frequencies from
diagonalizing the dynamical matrix.
To generalize, what we have done is to consider the Hamiltonian

H= JHiwp) + ) Viri,pip)). (4.78)
i ij

which we then transform into the following:

H=Ey+ ) Exefex + AE. (4.79)

K
The first term, £y, in Eq. (4.79) is the ground-state energy, the second term represents
the energy of the elementary excitations, and the third term, AE, is the residual energy
representing the interactions between the elementary excitations with terms involving more
creation and destruction operators. This term can be expressed in terms of lifetimes for
individual states k, 7, ~ A AEx. Hence 1 measures the decay time of an excitation,

For this picture of viewing a system in terms of elementary excitations (quasiparticles and
collective excitations) to be useful, we require that

ALy < Ex. (4.80)
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When Eq. (4.80) is satisfied, then we can view our system as a collection of nearly in-
dependent excitations, and the properties of a solid can be viewed by considering the
properties of a gas of these clementary excitations responding to a probe. In the example
of phonons discussed above, AE = 0 because we have made the harmonic approximation,
Any anharmonic terms in Eq. (4.7) would lead to interactions between phonons.

4.3 Response functions: heat capacity
SN S e ]

In many respects. the response functions corresponding to different probes have similar
features. The probe could be temperature or EM radiation, for example. The probes excite
clementary excitations which then give rise to the response based on the properties of the
system. The heat capacity at constant volume Cy(7) is a response function, giving the
responses (o a temperature probe by describing the 7 dependence of the energy U of the
system when elementary excitations are created.

C(D) = ((‘i) 3 (4.81)
ar/y

For a gas of phonons, we compute the thermodynamic average energy U using Bose statis-

tics for phonons (since they satisfy the boson commutator relations given in Eqgs. (4.73)
and (4.74)) with branch index /4, wavevector g, and energy hw; q:

1
U = Z A g I:(N,'._q(T)) -+ ;] X (4.82)

iq

where the phonon occupation is given by

|
(n; q(1) = T (4.83)
e T —|
Then
Moig hes;

: at e (Auz‘?)
D= o= = > hwiq = - (4.84)

449 e BT — l)

where &g is the Boltzmann’s constant. For a sample of volume ¥,

v .
Z ~> &P /; yd q (4.85)
< .




