Superconductivity in low-dimensional systems

- Lecture 1: Superconductivity and coherence: the old part of the story
- Lecture 2: SC in low (actually 2) dimensions.
 What's up with SC? Breaking news and old revisited stuff

International School of Physics and Technology of Matter Italy - Otranto 16 - 22 September 2012

Outline of lecture1: SC in a nutshell

- phenomenology;
- London theory and rigidity;
- BCS theory: the standard model;
- Ginzburg-Landau theory;
- SC and coherence;
- Josephson effect.

Aim: What is the SC state? Why do we discuss it in connection to coherence?

Some basic SC phenomenology:

1) the resistance vanishes below some critical T_c

n- Fig. 3. Low-temperature resistivity of a sample with x(Ba)=0.75, id recorded for different current densities

electronic cific heat (C<u></u> 2) Specific heat: jump at Tc i true phase transition (2nd order) occurs at Tc; exponential decrease indicates a gap in electronic excitations ubiguitous in traditional SCs, but now many examples of gapless SC are known Entropy: tends to zero below Tc: what kind of order establishes below Tc?

3) Tunnelling: again a gap is found at T≤Tc

4) Meissner effect (1937): a sheet of supercurrents completely screens the magnetic field inside the SC **B=0**

This is the distinctive feature

Two distinct behaviors under magnetic field: Type I: only complete Meissner effect Type II: Meissner effect complete up to Hc1 and then only partial up to Hc2

London's theory

See, e.g., J. R. Schrieffer "Theory of superconductivity" p. 10 Two-fluid picture: a mixture of normal and superfluid electrons

i) $\frac{\partial J_s}{\partial t} = \frac{n_s e^2}{m} E;$

(F=ma for superfluid electrons)

(Ohm's law for normal electrons, negligible for transport)

iii)
$$\nabla \times E = -\frac{1}{c} \frac{\partial B}{\partial t}$$

ii) $J_n = \sigma_n E;$

i) and iii) imply the eq. for a perfect conductor

Maxwell equation

$$\frac{d}{dt} \left(\nabla \times J_s + \frac{n_s e^2}{mc} B \right) = 0$$

London phenomenologically assumes const=0

$$\nabla \times J_s + \frac{n_s e^2}{mc} B = 0$$

London's equation

London's equation implies Meissner effect and B=0 inside the SC for any history...

$$\nabla \times B = \frac{4\pi}{c} J_s$$

$$\nabla \times \nabla \times B = \frac{4\pi}{c} \nabla \times J_s = -\left(\frac{4\pi n_s e^2}{mc^2}\right) B \frac{1}{\lambda^2}$$

Maxwell equation (neglect Jn and displacement currents for slowly varying fields)

 λ is the London penetration depth

This implies Meissner effect. For instance for a flat vacuum-SC interface one finds

$$\nabla \times J_s + \frac{n_s e^2}{mc} B = \nabla \times J_s + \frac{n_s e^2}{mc} \nabla \times A = 0$$

Suitably choosing the (London) gauge $\nabla \bullet A = 0$ and boundary conditions (like, for a simply connected isolated SC, $A_1 = 0$ one can equivalently rewrite L. eq. as

$$J_s = -\frac{n_s e^2}{mc} A$$

Only seemingly non gauge invariant, but A is uniquely determined by the London gauge+boundary conditions

Rigidity of the SC wavefunction

$$mv_s = p - \frac{e}{c}A \Longrightarrow \langle J_s \rangle = n_s e \langle v_s \rangle = ne \left(\langle p \rangle_A - \frac{e}{c}A \right)$$

is the sum of the paramagnetic and diamagnetic currents, where the paramagnetic current is given by

$$n_{s}e\langle p\rangle_{A} \equiv \langle J_{p}(r)\rangle = \frac{e\hbar}{2mi}\sum_{j=1}^{N_{s}}\int dr_{1}...dr_{N_{s}} \Big[\psi_{s}^{*}\nabla_{j}\psi_{s} - (\nabla_{j}\psi_{s}^{*})\psi_{s}\Big]\delta(r-r_{j})$$

while the diamagnetic current is $\langle J_{d}(r)\rangle = -\frac{e^{2}}{mc}n_{s}(r)A(r).$

London's hypotesis: the SC wavefunction does not change by perturbing the systems with a transverse slowly varying vector potential (rigidity):

$$\psi_{s}(A \neq 0) = \psi_{s}(A = 0)$$

Since $\langle p \rangle_{A=0} = 0$ rigidity implies $\langle p \rangle_{A} = 0 \Rightarrow \langle J_{p} \rangle = 0 \Rightarrow \langle J_{s} \rangle = \langle J_{d} \rangle = -\frac{ne^{2}}{mc}A$

Again London's equation....Meissner effect and infinite d.c. conductivity

$$\langle J_s(\omega) \rangle = -\frac{ne^2}{mc} \frac{1}{i\omega} (i\omega A(\omega)) = \sigma(\omega) E(\omega) \quad \text{with} \quad \sigma(\omega) = \pi \delta(\omega) + i \frac{P}{\omega}$$

Coherence Length

How many k states are substantially readjusted to form the new (paired) condensed state?

$$2\Delta \approx v_F \delta k$$

To form pairs the electron states are modified on length scales

$$\xi_0 \sim \delta k^{-1} \sim \frac{\hbar v_F}{\pi \Delta}$$

 ξ_0 is the typical size of an electron pair >>a

Many interconnected pairs form a rigid condensed state

Also the electromagnetic response feels this length scale (Pippard) with a non-local

response $\nabla \times \mathbf{j}(\mathbf{r}) = -\int d\mathbf{r}' K(\mathbf{r} - \mathbf{r}') \mathbf{B}(\mathbf{r}')$

$$J_{s}(r) = C \int dr' K(r-r') A(r')$$

The e.m. response kernel K lives on a range ~ ξ_0 : the electronic current in r feels the field in r' due to the electron-electron correlations due to pairing

Notice: if the field A(r') varies on length scales $\lambda >> \xi_0$ then the local London relation $J_s = -\frac{n_s e^2}{mc} A$ is recovered.

Bardeen, Cooper, Schrieffer theory: The standard model

Low Tc (standard metals) Normal state:

High energy e-e repulsion (~E_F~10eV)+ fast screening processes IR asymptotic freedom

Nearly free electron gas at low energy (Landau QP's)

Superconducting state Attraction (pairing) at low energy from phonons

(small expansion parameter, Migdal

Large pair size $\xi_0 >> a$: weak phase flucts. and rigid w.f.

All these concepts are challenged in current research on (low-D) SC

$$\frac{\omega_D}{E_F} << 1)$$

The BCS ground state

$$\Psi(r_1,\ldots,r_{2N}) = \operatorname{Antisymm}\left[\varphi(r_1 - r_2)\varphi(r_3 - r_4)\ldots\varphi(r_{2N-1} - r_{2N})\right] \equiv \Psi(N)$$

working with fixed N pairs is cumbersome (more on this later on). BCS introduce a trial WF

$$\left|\psi_{\phi}\right\rangle = \mathbf{N} \prod_{k} \left(1 + g_{k} e^{i\phi} c_{k\uparrow}^{+} c_{-k\downarrow}^{+}\right) |0\rangle$$

Normalization factor
$$\mathbf{N} = \frac{1}{\sqrt{\prod \left(1 + |g_{k}|^{2}\right)}}$$

$$\begin{split} |\psi\rangle &\text{ is a coherent superposition of states with 0,2,4,... electrons (actually Landau QPs)} \\ \text{paired into singlets (so called Cooper pairs). The g's are determined by the minimization of the reduced hamiltonian <math>H_{red} = \sum_{k\sigma} \varepsilon_k n_{k\sigma} + \sum_{kk'} V_{kk'} b_k^* b_{k'}$$
 with $b_k^+ = c_{k\uparrow}^+ c_{-k\downarrow}^+$ pair creation operator $\delta\langle W \rangle = \langle \psi_{\phi} \left| \left(H_{red} - \mu \mathring{N} \right) \right| \psi_{\phi} \rangle = 0$ $\langle \psi_{\phi} \left| \mathring{N} \right| \psi_{\phi} \rangle = \langle N \rangle \quad \sqrt{\langle N^2 \rangle - \langle N \rangle^2} \sim \sqrt{\langle N \rangle}$ N is not fixed, but it fluctuate little w.r.t. <N>

For
$$V_{kk'} = -V < 0$$
 (in an energy shell $|\xi_k - \mu| < \omega_D$) one finds a spectrum with a gap
 $E_k = \sqrt{(\varepsilon_k - \mu)^2 + |\Delta|^2}$
 $\Delta \approx 2\omega_D e^{-\frac{1}{\nu(0)V}}$ v(0) is the DOS at the Fermi level
 $K_B T_c \approx 1.14\omega_D e^{-\frac{1}{\nu(0)V}}$

Δ and Tc have the same (non analytic) form and are the same energy scale

This is a distinctive feature of BCS SC: as soon as the gap opens a coherent SC state occurs

A counterexample: the Negative U Hubbard model

In which sense "coherent"?

 $\ket{\psi_{\phi}}$ is labeled by the global phase ϕ

 $|\Psi_N\rangle$ and $|\psi_{\phi}\rangle$ are complete basis sets (quite similarly to eigenstates of r and p) and one can go from one basis to the other

Using the field operators
$$\psi_{\sigma}^{+}(x) = \sum_{k} e^{ik \cdot x} c_{k\sigma}^{+}$$
 one can show (see [Schrieffer]) that
 $|\Psi_{N}\rangle = \int_{0}^{2\pi} d\phi \cdot e^{iN\phi} |\psi_{\phi}\rangle = \frac{N}{N!} \left(\sum_{k} g_{k} b_{k}^{+} \right)^{N} |0\rangle = \frac{N}{N!} \left[\int \int dx dx' \psi_{\uparrow}^{+}(x) \psi_{\downarrow}^{+}(x') \left(\sum_{k} g_{k} e^{ik \cdot (x-x')} \right) \right]^{N}$
 $= Antisymm \left[\varphi(x_{1} - x_{2}) \dots \varphi(x_{2N-1} - x_{2N}) \right]$ with $\varphi(x - x')$ the WF of the Cooper pairs

N pairs in the same state φ : similar to the Bose condensation. However, here the pairs are not really bosons....(large overlaps on scale ξ_0 and the same energy scale for the electron binding energy and the condensation temperature T_c) (Counterexample: the negative-U Hubbard model)

The system undergoes a phase transition from incoherent unpaired electrons to a condensate of coherent pairs.

14N> = (dp = int 14=) = 27 dq e int even e 28ubr 10>; = $\mathcal{M}_{d\phi} e^{-iN\phi} \sum_{m} \frac{e^{i\phi m}}{m!} \left(\sum_{k} g_{k} b_{k}^{\dagger} \right)^{m} (0) = \sum_{m} \frac{1}{m!} (b^{\dagger})^{m} \int_{d\phi} e^{i\phi(m-N)} \int_{d\phi} e^{i\phi(m-N)$ $= W_{N!}^{4} \left(\sum_{k} g_{k} b_{k}^{\dagger} \right)^{N} |0\rangle = \frac{W}{N!} \left(\sum_{k} g_{k} \left(dx e^{iKx} \psi_{\mu}^{\dagger}(x) \left(dx' e^{iKx'} \psi_{\mu}^{\dagger}(x') \right)^{N} \right) \right)$ $= \frac{1}{N!} \left[\int dx dx' \psi_{1}^{\dagger}(x) \psi_{1}^{\dagger}(x') \sum_{k} g_{k} e^{ik(x-x')} \right]^{N}$ $\psi(x-x')$

The Ginzburg-Landau theory

[de Gennes],[Schrieffer],[NageleOrland]

 $\ket{\psi_{_{\phi}}}$ is a coherent state. Therefore it has overlap with itself even if one destroys a pair

$$\left\langle \psi_{\phi} \left| \psi_{\downarrow}(x) \psi_{\uparrow}(x) \right| \psi_{\phi} \right\rangle = \Psi(x)$$

Gorkov 1958

has the meaning of the pair WF with x center of mass and ξ_0 small with respect to the typical distances over which Ψ varies. This can be taken as a complex order parameter

$$\Psi(x) = 0, \quad T > T_c$$
$$\Psi(x) \neq 0, \quad T < T_c$$

To obtain an analytic free energy F (2nd-order transition) the GL functional is analytic and given by an expansion in terms of $\Psi(r)$

$$F[\Psi] = F_n + \int d^D r \left[\alpha |\Psi(r)|^2 + \frac{\beta}{2} |\Psi(r)^4| + \frac{1}{2m^*} \left| \left(-i\hbar\nabla - \frac{e^*}{c}A \right) \Psi(r) \right|^2 + \frac{h^2}{8\pi} \right]$$

with $\alpha(T) = \alpha'(T - T_c), \quad \beta > 0$

the stationarity conditions yield the GL equations

$$\alpha \Psi + \frac{\beta}{2} |\Psi|^2 \Psi + \frac{1}{2m^*} \left(-i\hbar \nabla - \frac{e^*}{c} A \right)^2 \Psi = 0$$
$$J = \frac{e^*\hbar}{2im^*} \left(\Psi^* \nabla \Psi - \Psi \nabla \Psi^* \right) - \frac{e^{*2}}{m^* c^2} |\Psi|^2 A$$

taking
$$\Psi(r) = |\Psi(r)|e^{i\varphi(r)}$$
 the 2nd eq. becomes:

$$J(r) = \frac{e^*}{m^*} |\Psi(r)|^2 \hbar \left(\nabla \varphi(r) - \frac{e^*}{\hbar c} A(r)\right)$$

$$|\Psi(r)|^2 \approx |\Psi_0|^2 = n_s^{pairs} = \frac{n_s}{2},$$

taking $\, \nabla \, {\mathsf x} \,$ on both sides one gets London eq. provided

$$e^* = 2e, m^* = 2m$$

$$\frac{\hbar}{m} \left(\nabla \varphi(r) - \frac{2e}{\hbar c} A(r) \right) = v_s$$

is the gauge-invariant velocity

The Josephson effect

[Anderson], [Tinkham, Ch. 6], [deGennes]

$$J_{x} = \frac{2e\hbar}{m^{*}} |\Psi|^{2} \left(\frac{\partial \varphi}{\partial x} - \frac{2\pi}{\Phi_{0}} A_{x} \right) \xrightarrow{\left(d \to 0, |\Psi|^{2} \to 0 \right)} J_{x} \approx \frac{1}{d} \int_{0}^{d} dx J_{x} = \frac{2e\hbar}{m^{*}} \frac{|\Psi|^{2}}{d} \gamma$$

Where $\Phi_{0} = \frac{hc}{2e}$ is the flux quantum
where the g.i. phase difference $\gamma \equiv \varphi_{2} - \varphi_{1} - \frac{2\pi}{\Phi_{0}} \int_{1}^{2} dx A_{x}$

Actually the phase difference may only be defined modulo 2π . Then

$$J_x \equiv J_0 \sin \gamma$$

 $J_0 = \frac{\pi \Delta(T)}{2eR_n} \tanh\left(\frac{\Delta(T)}{2K_BT}\right) \quad (T > 0) \text{ Ambegaokar, Baratoff}$

 $J_0 = \frac{\pi \Delta}{2eR_n} \quad (T = 0)$

$$\varphi_1, N_1 \rightarrow \varphi_2, N_2$$

the two nearby SCs 1 and 2 one have two conjugate variables: the g.i. phase difference γ and the numbers of electron pairs N1 and N2 What is their dynamics?

$$I = 2e\frac{dN_2}{dt} = -2e\frac{dN_1}{dt}$$

Remember that $[N, \varphi] = i \Rightarrow \Delta N \Delta \varphi \ge 1$ uncertainty relation (quite similar to that for r and p...). However, since $\langle N \rangle \sim 10^{20}$, one can satisfy $\Delta N / \langle N \rangle \sim \Delta \varphi \sim 10^{-10}$

One can adopt a semiclassical view in which both N and ϕ are fixed with precision 1/10¹⁰ and use a Hamilton classical mechanics analogy:

$r \leftrightarrow N$	Free energy instead of H	$F_{12}(\gamma) = const - \frac{\hbar I_0}{2c} \cos\gamma$
$p \nleftrightarrow \varphi$	at finite T (because it must be periodi	ic in γ and even
$H \nleftrightarrow F$	because the free energy careplacing ψ and ψ^*)	nnot change by

i)
$$\frac{d\gamma}{dt} = \frac{d\varphi_2}{dt} - \frac{d\varphi_1}{dt} = -2\frac{\partial F}{\partial N} = \frac{2}{\hbar}(\mu_1 - \mu_2)$$

If there is a difference in electrochemical potential due to a bias potential V, then the phase oscillates with frequency

$$\omega_J = \frac{2eV}{\hbar} \quad \text{Josephson frequency relation:} \\ \text{a d.c. V produces an oscillating current} \quad J(t) = J_0 \sin\left[\gamma_0 + \frac{2eV}{\hbar}t\right]$$

$$ii) \quad \frac{I_{12}}{2e} = \frac{dN_2^*}{dt} = -\frac{dN_1^*}{dt} = -\frac{1}{\hbar}\frac{\partial F_{12}}{\partial \varphi_1} = \frac{1}{\hbar}\frac{\partial F_{12}}{\partial \varphi_2} = \frac{1}{\hbar}\frac{\partial F_{12}}{\partial \gamma}$$

If one assumes $F_{12}(\gamma) = const - \frac{\hbar I_0}{2e} \cos \gamma$ one finds again: $I_{12}(t) = I_0 \sin[\gamma(t)] \qquad [I_0 = J_0(Area)]$

Summary: The traditional "dogmas"

•Pairs arise because (strong) e-e repulsion is screened at low energy and (weak) phonons dominate;

•Pairs are large and interconnected;

•The SC state is a *rigid* condensate of Cooper pairs (not really bosons);

•Tc and Δ are the same energy scale;

•At Tc a (coherent) state forms with a given global phase;

Next lecture will mostly be on how "dogmas" are violated

BIBLIOGRAPHY

- [Anderson]Anderson P. W., *Basic Notions of Condensed Matter Physics*, Advanced Book Program, Westview Press.
- [deGennes] de Gennes, P.-G., *Superconductivity of metals and alloys*, New York, Benjamin, 1966
- [NegeleOrland] Negele J.W., Orland H., *Quantum Many-Partice Systems*, Advanced Book Program, Westview Press.
- [Okun] Okun, *Leptons and quarks,*
- [Schrieffer] Schrieffer, J. R., *Theory of superconductivity*, Reading (Mass.), Benjamin, 1964.
- [Tinkham] Tinkham M., *Introduction to superconductivity*, New York, McGraw-Hill, 1975

SC, insulators and metals

 $\psi_{s}(A) = \psi_{s}(0) + \sum_{\alpha} \frac{\langle \psi_{\alpha} | H' | \psi_{s} \rangle}{E_{\alpha} - E_{s}} + \dots \qquad \begin{bmatrix} H' \propto p \cdot A \end{bmatrix} \quad \text{perturbation}$ $J_{s} = KA \quad \text{with the response kernel} \qquad K \propto \sum_{\alpha} \frac{\left| \frac{\langle \psi_{\alpha} | H' | \psi_{s} \rangle}{E_{\alpha} - E_{s}} \right|^{2}}{E_{\alpha} - E_{s}} + \frac{1}{\lambda^{2}} \equiv R + \frac{1}{\lambda^{2}}$

•If
$$\psi_s(A)$$
 is rigid: $\psi_s(A) = \psi_s(0) \Rightarrow \langle \psi_\alpha | H' | \psi_s \rangle = 0$

•If a gap is present $E_{\alpha} - E_s > 0$ the denominators in R do not vanish

Both conditions are realized in traditional SCs: $R(q \rightarrow 0) \rightarrow 0$ only the diamagnetic term remains and one recovers London Eq. Remarks:

i) the gap alone is not enough for SC: insulators have a gap, but the w.f. is not rigid and $\langle \psi_{\alpha} | H' | \psi_{s} \rangle \neq 0$ then $R(q \rightarrow 0) \rightarrow -\frac{1}{\lambda^{2}} + O(\omega) \Rightarrow K \rightarrow 0 + O(\omega)$ Ohm's law follows ii) if there is no gap: - normal metal $\langle \psi_{\alpha} | H' | \psi_{s} \rangle \rightarrow 0$; $(E_{\alpha} - E_{s}) \rightarrow 0$ $R(q \rightarrow 0) \rightarrow -\frac{1}{\lambda^{2}} + O(\omega) \Rightarrow K \rightarrow 0 + O(\omega)$ - gapless SC $\langle \psi_{\alpha} | H' | \psi_{s} \rangle \rightarrow 0$; $(E_{\alpha} - E_{s}) \rightarrow 0$ but $R(q \rightarrow 0) \neq -\frac{1}{\lambda^{2}} + O(\omega) \Rightarrow K \rightarrow const$

The Anderson-Higgs mechanism

P. W. Anderson 1958, P. W. Anderson 1963, P. Higgs 1964 [NegeleOrland],[Okun]

$$F\left[\Phi\right] = F_n + \int d^D r \left[\alpha \left|\Phi(r)\right|^2 + \frac{\beta}{2} \left|\Phi(r)^4\right| + \frac{1}{2m^*} \left\|\left(-i\hbar\nabla - \frac{e^*}{c}A\right)\Phi(r)\right|^2 + \frac{1}{4}F_{\mu\nu}F^{\mu\nu}\right]^2 + \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

$$\phi(x) = e^{i\ell(x)}(\phi_0 + \eta(x)) \qquad \phi(x) \to e^{-i\vartheta(x)}\phi(x)$$

$$\phi^*(x) = e^{-i\ell(x)}(\phi_0 + \eta(x)) \qquad \phi^*(x) \to e^{i\theta(x)}\phi^*(x)$$

$$A^{\mu}(x) \to A^{\mu}[x) + \frac{1}{e}\partial^{\mu}\theta(x)$$
gauge transformation

If one choses the gauge, $\xi(r) = \vartheta(r)$ then:

 $\langle \xi \xi \rangle$ flucts (which would give the Goldstone boson in the long wavelength) are gauged away;

$$\begin{split} \phi(x) &\to e^{-i\xi(x)}\phi(x) = e^{-i\xi(x)} \left[e^{i\xi(x)} \left(\phi_0 + \eta(x) \right) \right] = \phi_0 + \eta(x) \\ \phi^*(x) &\to e^{i\xi(x)}\phi^*(x) = e^{i\xi(x)} \left[e^{-i\xi(x)} \left(\phi_0 + \eta(x) \right) \right] = \phi_0 + \eta(x) \\ A^{\mu}(x) &\to A^{\mu}(x) + \frac{1}{e} \partial^{\mu}\xi(x) = \tilde{A}^{\mu}(x) \quad . \end{split}$$

$$\mathcal{L} = (\partial^{\mu} - ie\tilde{A}^{\mu})(\phi_{0} + \eta)(\partial_{\mu} + ie\tilde{A}_{\mu})(\phi_{0} + \eta) - r_{0}(\phi_{0} + \eta)^{2} - \frac{u_{0}}{2}(\phi_{0} + \eta)^{4} - \frac{1}{4}\tilde{F}_{\mu\nu}\tilde{F}^{\mu\nu}$$

	Number of			
	Field	Modes	Component	s m ²
Non	Scalar	η	1	-2r0
Interacting		ε	1	0
Fields	em	A^{ν}	2 (transverse	e) 0
Interacting Fields				
Symmetric Phase	Scalar	φ, φ*	2	r ₀
$(r_0 > 0)$	em	A^{μ}	2 (transverse	e) O
Interacting Fields				
Broken symmetry phase	Scalar	η	1	$-2r_{0}$
$(r_0 < 0)$	em	\tilde{A}^n	3	$-2e^2r_0/u_0$

Table 4.2 Summary of the degrees of freedom for a charged scalar field and electromagnetic field.

Meissner effect

1+2 = 1 2

$$\left|\psi_{\phi}^{1+2}\right\rangle = \left|\psi_{\phi}^{1}\right\rangle \otimes \left|\psi_{\phi}^{2}\right\rangle$$
If we insist to work with $\left|\psi_{N}^{i}\right\rangle = \frac{1}{2\pi} \int_{0}^{2\pi} d\phi \, e^{-iN_{i}\phi} \left|\psi_{\phi}^{i}\right\rangle \quad (i = 1, 2, 1+2) \text{ then}$

$$\left|\psi_{N_{1+2}}^{1+2}\right\rangle \neq \left|\psi_{N_{1}}^{1}\right\rangle \otimes \left|\psi_{N_{2}}^{2}\right\rangle$$

Now we look at the Ginzburg-Landau theory.