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Exercise I : Graphene π-electron band structure and ARPES

Let’s consider a simple TB model for the π bands of graphene.

1. Draw the two-dimensional honeycomb lattice of graphene. The C-C bond length is
equal to a = 1.42 Å. Place one C atom in the origin (atom A) and a nearest neighbor
atom (atom B) on the x axis. Draw the unit cell. How many are the atoms contained
in the unit cell? Draw the two basis vectors a1 and a2 for the direct lattice (notice that
to follow the standard convention for hexagonal lattices, the angle between the two
vectors should be 120◦, and not 60◦). How long are these vectors? Compute and draw
the two basis vectors b1 and b2 for the reciprocal and the first Brillouin zone. What
is the length in Å−1 of b1? The K point and K ′ point are the two distinct points at
the vertex of the Brillouin zone. Compute the distance between Γ and K. Write the
coordinates of K and K ′ in Cartesian coordinates and in terms of b1 and b2. The M
point is at the mid-distance between two adjacent K and K ′. How many distinct M
point are there?

2. For the π bands we consider a TB model with one πz orbital per C site |R+τα〉, where
R is a direct lattice vector and τα is the internal coordinate of the atom in the α site.
We neglect the overlap between different sites, namely: 〈R+ τα|R′+ τα′〉 = δR,R′δα,α′ .
We consider the onsite energy equal to zero, and a hopping integral equal to −t only
for the nearest-neighbor atoms. Write the Hamiltonian in the Bloch basis:

|kα〉 =
∑
R

1√
N
e+ik·(R+τα)|R + τα〉.

Obtain a k dependent Hamiltonian for the periodic part of the Bloch state Hk. Diag-
onalize the Hamiltonian. Draw the Band structure along the Γ−K −M line.

3. Show that the HK = HK′ = 0. Expand the Hamiltonian around K (or around K ′)
keeping the term linear in q = (k −K) (or q = (k −K ′)). Show that for one of the
two points (K or K ′) the resulting Hamiltonian H̄q (in the basis {|q + Kα〉}α=1,2) is
given by

H̄q = h̄vFσ · q

where h̄vF is the Fermi velocity and σx =

(
0 1
1 0

)
and σy =

(
0 −i
i 0

)
are the Pauli

matrices (notice that, since the σy is not symmetric, to obtain this result you have
to chose appropriately the order of the two atomic sites α = 1, 2). Show that for the
other point H̄q = −h̄vFσ∗ · q.

4. Compare the H̄q Hamiltonian with that obtained from a Dirac equation setting the
mass m = 0.
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5. Diagonalize H̄q. Compute the eigenenergies and eigenstates. Compare the resulting
linearized band structure with that of the original Hamiltonian.

6. Experimentally for graphene vF ' 106m/s. Compute the value of t in eV units that
gives such a velocity.

7. In the neutral case each carbon atom provides one electron to the crystal. Determine
(with justification) the position of the Fermi energy in the neutral case.

8. Consider the case where the Fermi energy is shifted up by 0.3eV (as in one of the
ARPES experiments). Using the approximated H̄q Hamiltonians compute the number
of extra electrons in graphene per unit surface, where the area is expressed in cm2.

9. Consider a graphene decorated by Li atoms with stoichiometry LiC12. Using the ap-
proximated H̄q Hamiltonians and supposing that each Li atom donate one electron to
graphene, compute the shift of the Fermi energy with respect to the neutral case. Com-
pare the results with the ARPES spectra measured in the bilayer graphene experiment
intercalated with Li.

10. For the neutral case and for the two doped case above, (using the approximated Hamil-
tonian), consider a hole created by a photoemission experiment. Compute and plot the
broadening of a hole due to the decay of the hole produced by the emission of a phonon
with energy of 0.18eV . Plot the broadening as a function of the energy distance of the
hole from the Fermi energy. Compare the 3 different cases. In which case the decay is
more visible? For the Li doped case consider the possibility to decay (with an equal
matrix element) into two distinct optical phonons with energy 0.18eV and 0.07eV .
Plot the broadening as a function of the energy distance of the hole from the Fermi
energy

11. Repeat the above calculations for the case of an inverse photoemission experiment, in
which one extra electron is injected above the Fermi energy. Plot the broadening as a
function of the energy distance of the electron from the Fermi energy.
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