
Roma la Sapienza Laurea Magistrale
Solid State Physics

Esercitazione ◦4: Calculation of the macroscopic susceptibility as
long-wave limit of a sinusoidal modulated perturbation

——

Exercise I :

1. Definitions - uniform electric field

The electric susceptibility tensor is gives the relation:

∆P = χE (1)

where ∆P is the macroscopic polarisation (electric dipole per unit volume) linearly
induced by E. E is the macroscopic (uniform) electric field. χ is a dimensionless
3x3 tensor. In a finite (insulating) solid (with insulating surfaces) of volume V the
polarisation is defined as:

P =
−|e|
V

∫
V
d3rrρ(r), (2)

and the induced polarisation is define as:

∆P =
−|e|
V

∫
V
d3rrρ(1)(r)E, (3)

where ρ(1)(r) is the linearly induced charge by the perturbing Hamiltonian1:

Hpert = |e|E · r. (4)

Show that, using the Hellmann-Feynman theorem:

P(E) = −dE(E)

dE
, (5)

where E is the total energy of the solid per unit volume. As a consequence show that:

χ = − d2E
dEdE

. (6)

Thus the quadratic variation of the electronic energy of the solid with respect to the
electric field is

∆E = −1

2
EχE (7)

This last two equations are valid (well-defined) also in an infinite (insulating) solid.

1To keep the system in an insulating ground state, we suppose that |e||E|L � εgap, where L is the
dimension of the finite solid in the direction of the field and εgap is the band-gap of the insulator. To avoid
the electrons, pushed by E, to jump in the vacuum, we also suppose to have an infinite barrier for the
electrons in the vacuum region
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2. Definitions - modulating field

We now consider a modulating electric field in the x̂ direction:

E(r) = −
√

2ε sin(qx)x̂. (8)

The corresponding electron potential is:

V (r) =

√
2ε|e|
q

cos(qx) =

√
2ε|e|
q

(
eiqx + e−iqx

2

)
. (9)

In the long wavelength limit (namely if 1/q is much larger than the size of the unit
cell of the crystal) we can suppose that in each point of the crystal the field can be
considered uniform on the scale of the unit cell. Under this hypothesis we can define
a “local macroscopic polarisation” (uniform on the microscopic periodic-cell scale but
non uniform on the macroscopic one), P(1)(r), that has as x component:

P (1)
x (r) = −

√
2ε sin(qx)χxx. (10)

The variation of the energy if the solid per unit volume would be:

∆E = − 1

V

∫
V
d3r

1

2
E(r)χE(r) = −χxxε

2

V

∫
V
d3r sin2(qx) = −1

2
χxxε

2. (11)

This equation tell us that we can obtain χxx from the limit:

χxx = − lim
q→0
E (2)(q) (12)

where E (2)(q) is the second derivative of the total electronic energy of the solid with
respect to ε considering the finite q perturbation given by the sinusoidal potential of
Eq. (9). Notice that E (2)(q) is defined for every value of q (small or large) and not only
in the q → 0 limit. the The goal of this exercise is to use linear response theory to
compute E (2)(q) and then to obtain χxx by considering the limit q → 0.

3. Calculation of E (2)(q)

Let’s consider a periodic insulating solid with Bloch function |ψki〉 = 1√
N
eik·r|uki〉 eigen-

vectors with eigenergies εki. Notice that the periodic part of the Bloch functions, |uki〉
is eigenvector of the k-dependent Hamiltonian Hk. We will neglect, in the response,
the Hartree and Exchange-correlation by setting KHxc = 0.

(a) Demonstrate that

E (2)(q) = 4
e2

2q2

∫ d3k

(2π)3
[Fk(q) + Fk(−q)], (13)

where

Fk(q) =
occupied∑

i

empty∑
j

〈uki|u(k+qx̂)j〉〈u(k+qx̂)j|uki〉
εki − ε(k+qx̂)j

(14)

(b) Demonstrate that Fk(0) = 0
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4. Perform the q → 0 limit

(a) Demonstrate that for a differentiable function f(x),

lim
x→0

f(x) + f(−x)− 2f(0)

x2
=
d2f(0)

dx2
(15)

(b) Write the explicit expression for Hk and compute

dHk

dk
(16)

(c) Demonstrate using perturbation theory that if εki 6= εkj

〈uki|
d|ukj〉
dk

=
h̄

me

〈uki|p|ukj〉
εkj − εki

(17)

(d) Demonstrate using Eq. (12) that:

χxx = 4
h̄2e2

m2
e

∫ d3k

(2π)3

occupied∑
i

empty∑
j

|〈ukj|px|uki〉|2

(εkj − εki)3
(18)
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