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This formula makes use of several properties of a three-
dimensional electron liquid that can be found in the work of
Perdew and Wang.46 The interpolation of Eq. "33# corre-
sponds to the line labeled 2 in Fig. 2.

One must realize that Eq. "33# has been devised without
any input regarding the intermediate q behavior of the func-
tion. We have therefore endeavored to construct variations of
this formula designed to explore the relevance and the effects
of the actual shape of G−"q# on the physical results.

One of the possible alternative variations of Eq. "33# is
provided by

G−
"2#"q;a# = & 1

2' q2
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2 −
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q2 + q↑↓
2 ( , q # akF

C"rs#q2 +
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"39#

which is a simple generalization of the Iwamoto and Pines
formula designed to allow an estimate of the effects of the
intermediate q regime on the physical properties. This ex-
pression corresponds to lines 3, 4, and 5 in Fig. 2.

Finally, an alternative interesting interpolation formula
was inspired by the q dependence of the two-dimensional
many-body field factors that we have reproduced in Figs. 3
and 4. In these plots, it is clear that, at least in two dimen-
sions, both G−"q# and G+"q# display a peak in the interme-
diate q region. In order to explore the effect of the existence
of such a feature, we have devised the following expression:
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where & and ' are the same quantities appearing in Eq. "31#.
This last interpolation formula corresponds to line 1 in Fig.
2.

IV. CALCULATING THE ELECTRONIC SELF-ENERGY

The screened-exchange part of the electron self-energy, as
given by Eqs. "8# and "24#, does not present any remarkable
numerical challenges. On the other hand, a number of com-
ments are in order to describe our handling of the numerical
analysis of Eqs. "9# and "25# corresponding to the Coulomb-
hole contributions.

A. Coulomb-hole part of the self-energy

Two problems require special attention in the evaluation
of the Coulomb-hole part of the self-energy.

1. Handling the plasma pole

To start with, we notice that the denominator of the den-
sity response equation *Eq. "10#+ vanishes when

1 − *1 − G+"q! ,(#+vq! Re )0"q! ,(# = 0, "41#

and concomitantly the imaginary part of the Lindhard func-
tion vanishes. This singularity is associated with the presence
in the spectrum of collective modes "in this case plasmons#
of which the dispersion law is represented by the solution
*pl"q!# of Eq. "41#. The plasmon is Landau damped when it
enters the electron-hole continuum. No corresponding singu-
larity occurs for the spin response, for which the correspon-
dent collective excitations "paramagnons# are damped for all
momenta.

The real part of the Coulomb-hole self-energy in Eq. "9#
can be separated into a plasmonic part and an electron-hole
part,

Re +CH"k!,(# = Re +CH
"eh#"k!,(# + Re +CH

"pl#"k!,(# . "42#

The plasmon contribution to the imaginary part of the dielec-
tric constant can be written as1
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Approximating G+"q! ,(# with its static value, the plasmonic
part of Eq. "9# becomes
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Many-body local fields theory of quasiparticle properties in a three-dimensional electron liquid
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We present a quantitative study of the quasiparticle properties of a three-dimensional electron Fermi liquid.
Our approach is based on the theory of the many-body local field factors which we use to include vertex
corrections associated with charge and spin fluctuations. Extensive use is made of the results of recent quantum
Monte Carlo calculations. Several models for the wave-vector dependence of the spin-antisymmetric many-
body local field factor G−, for which no numerical results are currently available, are discussed and compared.
Both the real and imaginary parts of the self-energy as well as the quasiparticle renormalization constant and
the enhancement of the effective mass are calculated in the experimentally accessible range of electron den-
sities. The results obtained by means of the on-shell approximation are critically compared with those given by
a self-consistent solution of the Dyson equation. An ultraviolet catastrophe in the Coulomb-hole part of the
self-energy is identified and a satisfactory resolution of this impasse is presented. The same many-body local
field factors are also used to obtain the Landau interaction function. This allows us to obtain both the spin
susceptibility and the proper compressibility of the system.
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I. INTRODUCTION

Although two-dimensional systems have recently almost
supplanted the three-dimensional elemental metals as the
system of choice to test microscopic many-body theories of
the electron liquid, it is quite useful to further develop theo-
ries for the three-dimensional case in view of the fact that a
number of methods still see considerable use in the semi-
quantitative determination of the properties of a large class
of three-dimensional metallic and semiconducting
systems.1–4

In the absence of polarization, the only relevant parameter
to the physics of the electron liquid is represented by the
dimensionless density parameter rs which, the three dimen-
sions, is given by rs= ! 3

4"n
"1/3aB

−1, where n is the electron
number density and aB the effective Bohr radius. It is widely
believed that in the high to metallic density regime, which
corresponds to values of rs in the approximate range 0#rs
#6, the electronic system of a three-dimensional metal is in
a Fermi liquid state. Since a perturbative treatment of the
effects of the Coulomb interaction is significant only for
rs≪1, a number of approximated theoretical schemes have
been developed that are designed to cautiously venture into
the intermediate coupling regime. Methods range from dia-
grammatic expansions5 to theories based on the many-body
local field factor idea.1 Quantum Monte Carlo based numeri-
cal studies offer an alternative route and have the advantage
of a theoretical framework that is accurate and virtually exact
for a wide range of densities.6–10

Despite intensive efforts, a quantitative characterization of
the Fermi liquid regime in the intermediate density range is
still to be achieved. In the case of the three-dimensional elec-
tron liquid, following a route originally proposed by
Hubbard,11 vertex corrections were approximately incorpo-
rated to this purpose by Rice12 through the use of a static
many-body local field factor in an attempt to go beyond the
random phase approximation !RPA" of Hedin and
Lundqvist13 and Quinn and Ferrell.14,15 This early approxi-

mate approach is still quite popular, although it attempts to
capture physical effects beyond the RPA by including only
the parallel spin many-body local field factor. A number of
shortcomings of this theory have been identified and
discussed in Refs. 16 and 17.

Following Rice’s work, calculations for the three-
dimensional electron liquid were carried out by Zhu and
Overhauser,18 who for the first time employed the spin-
antisymmetric local field factor, and most recently, by means
of diagrammatic means, by Rahman and Vignale19 and Ng
and Singwi.20,21

The many-body local field factor method was more re-
cently rid of serious problems and further developed by
Yarlagadda and Giuliani who also provided a modern deri-
vation by making use of the renormalized Hamiltonian
approach.16,22 A direct application of the technique was pro-
vided for the two-dimensional case.23 Very recently, a more
accurate analysis of the latter was reported in Ref. 24.

While for the two-dimensional electron liquid modern
versions of the many-body local field factors were employed
in the most recent calculations !see, for instance, Ref. 24",
this has never been attempted for the case of the three-
dimensional electron liquid. To remedy this situation is the
purpose of our work.

The recent developments of accurate diffusion quantum
Monte Carlo numerical techniques have allowed the precise
evaluation of some of the relevant static many-body local
field factors. In particular, both the static spin-symmetric8

and spin-antisymmetric9 many-body local field factors have
been obtained for the two-dimensional electron liquid. On
the other hand, in view of the magnitude of the numerical
effort required, only the corresponding spin-symmetric quan-
tity has been obtained for the three-dimensional case.7 Cor-
responding useful interpolation formulas have been devised
as to expedite the use of quantum Monte Carlo results within
numerical approaches.25–28 The latter have recently found an
interesting and elegant application in the virtually exact cal-
culation of the linear charge modulation of the electron den-
sity in the presence of an impurity potential !Friedel oscilla-
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Self-consistent GW0 results for the electron gas: Fixed screened potential W0
within the random-phase approximation
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With the aim of properly understanding the basis for and the utility of many-body perturbation theory as
applied to extended metallic systems, we have calculated the electronic self-energy of the homogeneous
electron gas within the GW approximation. The calculation has been carried out in a self-consistent way; i.e.,
the one-electron Green function obtained from Dyson’s equation is the same as that used to calculate the
self-energy. The self-consistency is restricted in the sense that the screened interaction W is kept fixed and
equal to that of the random-phase approximation for the gas. We have found that the final results are margin-
ally affected by the broadening of the quasiparticles, and that their self-consistent energies are still close to
their free-electron counterparts as they are in non-self-consistent calculations. The reduction in strength of the
quasiparticles and the development of satellite structure ~plasmons! gives, however, a markedly smaller dy-
namical self-energy leading to, e.g., a smaller reduction in the quasiparticle strength as compared to non-self-
consistent results. The relatively bad description of plasmon structure within the non-self-consistent GW
approximation is marginally improved. A first attempt at including W in the self-consistency cycle leads to an
even broader and structureless satellite spectrum in disagreement with experiment. @S0163-1829~96!05136-3#

I. INTRODUCTION

In the late 1950s the techniques of field theory and many-
body perturbation theory ~MBPT! were incorporated into the
tool box of solid-state theory. After an enthusiastic period in
the beginning of the 1960s, when a lot of fundamental theo-
rems were proven and some numerical results were obtained
for a few systems, especially for the electron gas, the activity
within this area of research showed a marked decline. This
was certainly not caused by a widespread feeling that most
important problems were already solved, although remarks
to that effect can nowadays be found in the literature. Instead
there were two obvious reasons for the diminishing interest
in many-body perturbation theory as applied to real solids.
The numerical difficulties associated with evaluating any-
thing but the most simpleminded approximations in real sol-
ids were prohibitively large. Second, the original enthusiasm
was damped by the realization that, at least in highly degen-
erate metallic systems, one is dealing with a divergent per-
turbation series. Thus the choice of physical processes or
diagrams to include in a particular approximation must be
guided by physical insight and intuition. There is thus no
systematic way of obtaining successively better approxima-
tions.
Armed with modern computers and with a better knowl-

edge on how to describe the underlying one-electron struc-
ture in a very efficient way, we are now able to apply more
complicated and therefore more realistic approximations
within MBPT to real solids. These efforts are exemplified by
the so called GW calculations for different
semi-conductors,1–3 and for the transition metals4–6 and their
oxides.7
The GW approximation8 owes its name to the fact that it

is defined by approximating the electronic self-energy as a
product of the Green function G and the screened interaction

W . In this way one obtains one of the simplest possible ex-
tensions of Hartree-Fock theory by replacing the bare Cou-
lomb interaction by a dynamically screened interaction
(W). Thus the GW approximation could equally well have
been referred to as the dynamically screened exchange ap-
proximation. The GW approximation has a number of desir-
able physical properties in most physical systems ranging
from atoms to the electron gas. For a review of these we
refer to Ref. 9. For one thing, the GW approximation gives a
very accurate description of the quasiparticles in all systems
to which it has been applied. It is important to stress, how-
ever, that these nice features are not consequences of the GW
approximation being the lowest-order correction in a rapidly
convergent perturbation expansion starting from the
independent-particle approximation. On the contrary, it has
proven exceedingly difficult to go beyond the GW approxi-
mation, and results most often deteriorate by adding higher-
order corrections.
In the original formulation of the GW approximation,8 the

Green function used to generate the electronic self-energy
within the GW approximation, was the Green function ob-
tained from Dyson’s equation in which the same self-energy
appeared as a nonlocal energy dependent potential. The self-
consistency implied by this prescription has never been at-
tempted in any realistic system — not even in the electron
gas. As far as we know, the first fully self-consistent GW
calculation was recently carried out for a model system con-
sisting of a quasi-one-dimensional semiconducting wire.10
Unfortunately, the relevance of this model to actual solids is
somewhat unclear.10 Nevertheless, it was shown early on11,12
that such a self-consistent scheme results in a so-called con-
serving approximation which automatically obeys several
sum rules and consistency requirements like, e.g., particle
conservation and energy conservation under the influence of
external perturbations. Moreover, it has been demonstrated,
e.g., in NiO,7 that the effect of self-consistency can be large
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FIG. 3. The self-consistent spectral function of the self-energy
at the Fermi surface (k/kF51) compared to that of the first itera-
tion. Note the reduction in magnitude and the spreading of the total
weight.

FIG. 4. The real part of the self-energy of the self-consistent
calculation and of the first iteration respectively. Note the less steep
slope at the Fermi energy for the self-consistent case.

FIG. 5. The quasiparticle dispersion (Ek) for two electron den-
sities, rs52 and rs54 where rs is the usual electron gas parameter.
The largest change in the bandwidth occurs for rs54.

FIG. 6. The momentum distribution function nk of the electrons
for three cases: ~i! the self-consistent case, ~ii! the first iteration, and
~iii! the noninteracting electron gas. The quasiparticle renormaliza-
tion factor at the Fermi surface here shows up as the magnitude of
the discontinuity, which is increased by self-consistency (rs54).

FIG. 7. The self-consistent quasiparticle dispersion compared to
that from the first iteration. Also shown is the free-electron disper-
sion and that obtained by using the noninteracting nk when calcu-
lating the Hartree-Fock self-energy (rs54).

FIG. 8. The broadening of the quasiparticle peak as obtained
from the spectral function ~multiplied by p) of the self-energy
evaluated at the quasiparticle energy. The sharpening of the quasi-
particle peak due to self-consistency is evident (rs54).
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Abstract

An ab initio Wannier-function-based approach to electronic ground-state calculations for crystalline solids is outlined.
Using a linear combination of atomic orbitals, the infinite character of the solid is rigorously taken into account. The
Hartree–Fock ground-state energy, cohesive energy, lattice constant and bulk modulus are calculated in an ab initio manner,
as demonstrated for sodium chloride, using basis sets close to the Hartree–Fock limit. The Hartree–Fock band-structure can
be recovered with the current approach and agrees with that obtained from a Bloch-orbital-based calculation. The advantage
of the present approach lies in its capability to include electron correlation effects for crystalline insulators by means of
quantum chemical procedures. q 1998 Elsevier Science B.V.

1. Introduction

Calculations of ground-state properties as well as
band-structure calculations are usually done in the
so-called Bloch-orbital approach that employs itiner-
ant orbitals, which are delocalized all over the infi-

w xnite crystal 1 . The wavefunctions obtained, in a
single-determinantal framework, naturally fall into
irreducible representations according to the transla-
tional symmetry of the system. Thus this method is
well adapted to the problem at hand. The state-of-

Ž .the-art Hartree–Fock HF calculations following this
approach are represented by the CRYSTAL program
w x2–4 . However, to go beyond the HF approach
means to allow for electron correlation which is a
more or less local phenomenon. Here, the use of
delocalized Bloch orbitals might not be the optimum
choice.
Of course, the latter remark only applies to wave-

function-based methods aimed at explicitly including
electron correlation at a microscopic level. In con-

Ž .trast to that, density-functional theory DFT implic-
itly incorporates correlation into a local
potentialrenergy-density, formally still at the inde-

w x 1pendent-particle level 5 . DFT band-structures are
often without rigorous theoretical justification, di-
rectly identified with the eigenvalue spectrum of the

Ž .Kohn–Sham KS equations. A better theoretical
foundation has been achieved using the GW approxi-
mation which has been developed for calculating
quasi-particle excitations in semiconductors and in-

w xsulators 7 , but still the approximations are not fully
controlled.

1 w xA review article was given by Payne et al. 6 ; for an
application to band-structure calculations of semiconductors, see

w xthe results of U. Schmid and N.E. Christensen given in Ref. 7 .
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Fig. 1. Hartree–Fock band structure for NaCl. The highest three
Ž .valence bands the upper one being degenerate as well as the

lowest three conduction bands are displayed. The solid line shows
results of the present work. For comparison, the results obtained
by CRYSTAL95 are shown as dotted lines.

valence point. For the sake of comparison, results
obtained by using the program package CRYSTAL95
of the Torino group with the same basis set are
plotted as a dotted curve together with the results of

Ž .the present work solid line . We observe an excel-
lent overall agreement when comparing the curves
obtained by the two approaches. For the sake of
transparency we also give numerical values of the
quasiparticle energies at the specified symmetry
points in Table 3.
As for the deviations between our results and the

ones obtained with CRYSTAL95, a remark concerning
a technical detail is in order here. As can be seen

Table 3
Comparison of the quasiparticle energies at high symmetry points
for the first three occupied and unoccupied bands

1 2 3 4 5 6

L a y0.094 y0.014 y0.014 0.746 0.773 1.096
b y0.095 y0.014 y0.014 0.743 0.774 1.047

G a 0.000 0.000 0.000 0.536 1.126 1.126
b 0.000 0.000 0.000 0.531 1.133 1.133

X a y0.084 y0.031 y0.031 0.787 0.799 0.974
b y0.086 y0.032 y0.032 0.779 0.800 0.978

Row ‘a’ contains the values given by CRYSTAL95, row ‘b’ the
corresponding values of this Letter. The energies at the gamma-
point are chosen to be zero. All results are in hartree.

from Table 3, deviations between the two approaches
are F2 mE for the valence bands, whereas for theh
conduction bands differences of up to ;10 mEh
arise for the highest band at the L point, which is
well outside the overall agreement in the total energy
per unit cell given above. This can be traced back to
the usage of Gaussian lobe basis functions in our
calculations. To confirm this point we made test
calculations on the NaCl molecule comparing results
with Cartesian Gaussian and Gaussian lobe basis
functions. The comparison of the single-particle en-
ergies reveals the same features as in the case of the
solid. A deviation of some tenth of a mE for theh
highest occupied states is contrasted by a deviation
of up to 13 mE in the excited states. This helps toh
clarify the slight deviations in Table 3. We want to
point out, however, that the use of Gaussian lobe
functions does not imply any approximations in our
HF scheme, but merely corresponds to the use of
alternative basis functions.

4. Conclusions

An ab initio Hartree–Fock approach for insulating
crystals yielding directly orbitals in a chemically
intuitive localized representation has been applied to
band-structure calculations as well as the determina-
tion of the lattice constant, cohesive energy and bulk
modulus of sodium chloride NaCl. The close agree-
ment between the results obtained using the present
approach and corresponding ones obtained using the
conventional Bloch-orbital-based HF approach,
demonstrates that the two schemes are equivalent.
The advantage of our method is that by taking into
account local excitations from the Hartree–Fock ref-
erence state using conventional quantum-chemical
methods, one can go beyond the mean-field level and
study the influence of electron correlations on, e.g.
on the binding energy and the band-structure of a
solid, in an entirely ab initio manner. Work along
these lines is currently underway in our laboratory.
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Based on the ab initio density functional theory we study the influence of many-body effects on the
quasiparticle !QP" band structures and optical absorption spectra of highly ionic crystals. Quasiparticle shifts
and electron-hole interaction are studied within the GW approximation. In addition to the electronic screening
the effect of the lattice polarizability is discussed in detail. Substantial effects are observed for QP bands of
AlN and NaCl that have large polaron constants of 1–2. The effect of electronic and lattice polarization on the
optical spectra is discussed in terms of dynamical screening and vertex corrections. The results are critically
discussed in the light of experimental data available. We find that measured peak positions can be reproduced
without lattice polarizability in the screening of the electron-hole interaction and a reduced lattice contribution
to the QP shifts.
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I. INTRODUCTION

Single-particle and two-particle electronic excitations are
accompanied by the rearrangement of the remaining elec-
trons in a solid. This effect is known as screening of excited
electrons !above the Fermi level" and excited holes !missing
electrons below the Fermi level". The calculation of such
electronic excitations has made substantial progress in the
last decades, in particular using the framework of the many-
body perturbation theory !MPBT".1 In the case of clusters
and molecular structures also the density-functional response
theory is applied.2 The most common assumption in the
MBPT is the GW approximation !GWA" of Hedin3,4 which
describes the response of the electrons by a dynamically
screened Coulomb potential W. In this approximation the
self-energy operator " of an excited particle is given as a
product of the potential W and the Green’s function G. The
poles of the G function correspond to the energies of the
dressed particles, the quasiparticles. Electron-hole pair exci-
tations are described by a special two-particle Green’s func-
tion, the so-called !irreducible" polarization function P. It
obeys a Bethe-Salpeter equation !BSE".5,6 Apart from an
electron-hole exchange !local-field effect" term proportional
to the bare Coulomb potential v, its kernel is dominated by
the variational derivative #" /#G and hence by the screened
potential W in random-phase approximation !RPA" which is
already used in GWA and describes the attractive interaction
of quasielectrons and quasiholes.7

The quasiparticle !QP" band structures of semiconductors
and insulators are now well described by means of ab initio
methods based on the density-functional theory8 !DFT"
within the local-density approximation !LDA" for exchange
and correlation !XC".9 For DFT-LDA bands with a correct
energetical order the QP effects can be included by means
first-order perturbation theory with respect to the difference
of the XC self-energy and the XC potential already used in
the Kohn-Sham equation of the DFT. Its numerical
implementation10,11 usually yields single-particle excitation
energies in good agreement !with an accuracy of about
0.1 eV" with angle-resolved photoemission/inverse photo-
emission experiments.12–14 Solutions of the BSE in an ab

initio framework also appeared in the literature in the past
few years. Optical spectra can now be calculated including
excitonic effects for semiconductors and insulators,15–17 solid
surfaces,18,19 and even molecules.17,20,21 These effects can
also be included in nonlinear optical properties.22 All these
calculations are based on computations of the dielectric ma-
trix within the independent-particle approximation or a
model dielectric function for the electronic system. The same
calculational scheme has been also applied to wide-gap in-
sulators, such as LiF and MgO,23,24 and wide gap semicon-
ductors, e.g., AlN.25 These materials possess a remarkable
ionic contribution to the total chemical bonding. The bond
ionicity on an ab initio scale is given by the charge asymme-
try coefficient g with values g=0.794 !AlN" and g=0.958
!NaCl".26

Polar materials are characterized by longitudinal-optical
!LO" phonons whose excitation induces large macroscopic
electric fields in the crystal.27 These fields strongly couple to
the excited electrons and holes and modify their motion.
Therefore, the question arises whether or not the lattice po-
larizability contributes to the dressing of the quasiparticles
and the screening of the electron-hole attraction. Ionic crys-
tals with big dynamical ion charges should show strong lat-
tice polaron effects modifying the electronic states near the
band edges.28 Such systems have small static dielectric con-
stants $0 and $% and relatively large longitudinal optical pho-
non frequencies &LO. Because the static lattice polarizability
!$0−$%" is of the same order of magnitude as the static elec-
tronic dielectric polarizability !$%−1" at high frequencies
&'&LO, large polaron constants (p= !1/$%−1/$0"
)!* /2maB

2&LO"1/2 !aB-Bohr radius" result,28 for instance (p
#1.2 or #2.0 for binary systems such as AlN and NaCl,
respectively. They yield non-negligible polaron shifts
+(p*&LO of about 0.1–0.4 eV if perturbation theory can be
applied to electron or hole states. However, it is not clear !i"
how the lattice polarization really influences the quasiparticle
bands and !ii" whether or not the lattice polarization plays a
role on the time scale of the formation of a Coulomb-
correlated electron-hole pair. There are several open ques-
tions concerning the theoretical description of excitations in
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the lattice polarizability. The right panels !Fig. 4"b#$ give the
same spectra with the inclusion of excitonic effects. The cal-
culated curves are compared with measured spectra.79 The
QP spectra demonstrate that the most important effect of the
inclusion of the lattice polarizability is an almost rigid red-
shift of about 0.8 eV. The lineshape is less influenced. On
the other hand, the Coulomb correlations, screened electron-
hole attraction and electron-hole exchange in "7#, yield a
drastic redistribution of the absorption spectrum "more
strictly: imaginary part of the dielectric function#. Spectral
density is redistributed from the high-energy region closer to
the region following the absorption onset in agreement with
previous observations for other crystals.50 This tendency is
combined with an overall redshift of the absorption due to
the Coulomb effects. However, no bound excitons are ob-
served below the absorption onset within our numerical ac-
curacy. Their reproduction may require denser k-point
meshes. The redshift amounts to about 1.2 eV for the pure
electronic screening and is reduced to 0.6 eV after inclusion
of the lattice polarization. As a consequence of the different
action of the lattice polarizability on the QP shifts and the
Coulomb attraction, the optical spectra resulting for two dif-
ferent screenings, with and without lattice polarization, ex-
hibit wide similarities. The spectrum with the larger screen-

ing is only less redshifted with respect to that computed for
the pure electronic screening effect.

The question, which of the two computed spectra better
fits to the measured one, is difficult to answer. The low-
energy side of the absorption and the peak structure in the
real part fit better to the neglect of the lattice polarizability.
The reason may be the partial cancellation of the polaron
effects due to vertex corrections "see discussion in Sec. III#
and the dynamics of the screening in the electron-hole attrac-
tion. The spectral redshifts due to the excitonic effects are
with 0.6 or 1.2 eV much larger than the optical phonon en-
ergies. As a consequence the spectrum computed with the
pure electronic screening may be closer to the measured one.
Conclusions within the Wannier-Mott exciton picture con-
cerning the correct inclusion of dynamical screening are also
very difficult. Using the band and dielectric parameters from
Ref. 80 one finds different exciton binding energies of about
0.09 eV"!0# or 0.29 eV"!"# in dependence of the dielectric
constant. These values surround the optical phonon energy of
0.10 eV. This fact and the comparison of the theoretical and
experimental spectra in Fig. 4"b# indicate that further studies
are needed with an improved k-point sampling "on the theo-
retical side# and improved sample quality "on the experimen-
tal side#.

FIG. 3. Quasiparticle bands without "a# and with "b# the effect of the lattice polarization for rs-NaCl. The valence-band maximum is used
as energy zero. The filled circles indicate measured band positions "Ref. 71#.

FIG. 4. Frequency-dependent macroscopic di-
electric function of zb-AlN within the
independent-quasiparticle approximation "a# and
for Coulomb-correlated electron-hole pairs "b#.
The QP and excitonic effects have been calcu-
lated using pure-electronic screening "solid lines#
or under inclusion of the lattice polarizability
"dashed lines#. The theoretical spectra are com-
pared with experimental ones "dotted lines# "Ref.
79#.
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ply a typical broadening !=0.15 or 0.20 eV of the electron-
hole pairs. The rank of the Hamiltonian matrix !7" is gov-
erned by the number of valence !v" and conduction !c" bands
and the number of k points in the Brillouin zone !BZ". In the
case of the cubic crystals with an fcc Bravais lattice, we
typically take four valence and four conduction bands into
account. The BZ is sampled by 4000 random k points. They
are generated by means of a random number generator. Spe-
cial points such as of the Monkhorst-Pack type54 may give
rise to a faster convergence in the calculations of the inter-
band density of states. However, random k points distributed
over the entire BZ give rise to a faster convergence after
inclusion of the strong electron-hole interaction. This has
been recently demonstrated for silicon.55 The resulting num-
ber of 48000 pair states is nearly conserved in the wurtzite
case by doubling the number of bands but reducing the num-
ber of points in the BZ. Such an approach requires the di-
agonalization of large-rank matrices. In order to bypass the
diagonalization of the Hamiltonian !7", we have developed a
numerically more efficient initial-state method19,50 to calcu-
late the optical polarizability, which is essentially the product
of the transition matrix elements !5" and the polarization
function !6". This quantity obeys an evolution equation
driven by the Hamiltonian !7". In the case of w-AlN we
double the number of bands but restrict the BZ sampling to
1000 random k points. For NaCl the bands are more flat
comparing with AlN. For that reason we slightly reduce the
BZ sampling to 300 random k points when using a conven-
tional unit cell with 8 atoms.

D. Lattice polarizability

Usually the screened interaction W in Secs. II B and II C
only contains the response of the inhomogeneous electron
gas. For strongly ionic systems with large lattice polarizabil-
ities the question arises how the motion of the nuclei will
effect the energies and strengths of electronic single-particle
and pair excitations. An answer may be given by taking the
electron-phonon interaction into account. There are many pa-
pers that have been addressed to this problem !see Ref. 28
and references therein". On the other hand, the GW approxi-
mation suggests a simple way to study the influence of the
lattice motion, in particular the motion of charged ions, by
modifying the screening of the coupled electron-lattice sys-
tem. The effect of the lattice polarizability may be described
by a modified frequency-dependent dielectric matrix of the
crystal

"!q + G,q + G!;#" = $GG! + 4%&el!q + G,q + G!;#"

+ 4%&lat!q + G,q + G!;#" !10"

with
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The most important electronic contribution &el to the polar-

izability of the crystal is taken in a form described
elsewhere.41,46,50 In the strongly ionic crystals under consid-
eration, in addition, there exists a contribution &lat of the
polarizable lattice. In the long-wave-length limit !G=G!
=0,q→0" it is given as27,56

&lat!q → 0,q → 0;#" =
1

4%
&

&=x,y,z
q̂&

2'"&&!#" − "'&( ,

"&&!#" = "'&)1 +
#LO

2 !&" − #TO
2 !&"

#TO
2 !&" − !# + i0+"2* !11"

with q̂=q / #q#, the zone-center optical frequencies #LO!&"
and #TO!&", and "0&="&&!0" or "'&="&&!#(#LO!&"". In
the case of the uniaxial wurtzite crystals with four atoms in
the unit cell, expression !11" is generalized to a direction-
dependent quantity because of the two independent tensor
components "xx!#"="yy!#" and "zz!#". In this case the pho-
non frequencies have to be replaced by those of E1!A1" sym-
metry for the xx=yy!zz" component.

The quantities "'& in expression !11" represent the static
electronic dielectric constants of the semiconductor or insu-
lator under consideration. The total static dielectric constants
"0& of the polar crystal are enlarged by the static lattice po-
larizability. In a hexagonal or cubic crystal the dielectric con-
stants obey the Lyddane-Sachs-Teller relation "0& /"'&
= '#LO!&" /#TO!&"(.2,27,56 The tensor character of the dielec-
tric constants in the wurtzite case has been neglected in the
many-body calculations. In the literature there is a body of
varying dielectric constants. In the many-body calculations
we use reliable values "'=4.4 and "0=9.14 for both w- and
zb-AlN.38,57 For rs-NaCl these values are "'=2.35 and "0
=5.45.58 In the case of AlN the used values are close to such
derived from RPA or density-functional perturbation theory
calculations.38,57

E. Inclusion of lattice polarizability

The replacement of the dielectric matrix by expression
!10" has a great advantage. The response of both electron gas
and ionic lattice can be described simultaneously for any
electronic excitation, electron, hole, and electron-hole pair.
In the limit of small wave vectors and frequencies, &el!q
+G ,q+G! ;#"= !1/4%"!"'−1"$GG!, the imaginary part of
the inverse matrix reads as !#)0"

Im "−1!q + G,q + G!;#" =
%

2

#LO
2 − #TO

2

#LO"'

$!#LO − #"$GG!

=
%

2
$ 1

"'

−
1
"0
%#LO$!#LO − #"$GG!.

!12"

The prefactor in !12", +!1/"'−1/"0", dominates the
Fröhlich coupling constant of the interaction between elec-
trons and longitudinal optical phonons !Ref. 28 and refer-
ences therein". The expression !12" immediately yields the
self-energy of an electron or hole polaron using the spectral
representation of the self-energy !1".28 The discussed small
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Band structure of NaCl in HF and GW vs experiment	
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