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dispersions of Si were calculated as well by Savrasov
(1996) as a test of the LMTO implementation of DFPT.
Dispersions for InP appear in a paper devoted to the
(110) surface phonons of InP (Fritsch, Pavone, and
Schröder, 1995); dispersions for both GaP and InP were
published in a study of phonons in GaInP2 alloys (Ozo-
liņš and Zunger, 1998). For all these materials, phonon
spectra and effective charges are in very good agree-
ment with experiments, where available. For AlAs—for
which experimental data are very scarce—these calcula-
tions provide the only reliable prediction of the entire
phonon dispersion curve. For Si, the calculated phonon
displacement patterns compare favorably to those ex-
tracted from inelastic neutron-scattering experiments
(Kulda et al., 1994).

In all these materials the interatomic force constants
turn out to be quite long ranged along the (110) direc-
tion. This feature had already been observed in early
calculations (Herman, 1959; Kane, 1985; Fleszar and
Resta, 1986) and is related to the peculiar topology of
diamond and zinc-blende lattices, with bond chains
propagating along the (110) directions.

The force constants of GaAs and of AlAs are espe-
cially interesting in view of their use in complex GaAlAs
systems such as superlattices, disordered superlattices,
and alloys. While the phonon dispersions in GaAs are
experimentally well characterized, bulk samples of AlAs
of good quality are not available, and little experimental
information on its vibrational modes has been collected.
For several years it has been assumed that the force
constants of GaAs and those of AlAs are very similar
and that one can obtain the dynamical properties of
AlAs using the force constants of GaAs and the masses
of AlAs (the mass approximation; Meskini and Kunc,
1978). The DFPT calculations provided convincing evi-
dence that the mass approximation holds to a very good
extent between GaAs and AlAs (Giannozzi et al., 1991).
This transferability of force constants makes it possible
to calculate rather easily and accurately the vibrational
spectra of complex GaAlAs systems (Baroni, Giannozzi,
and Molinari, 1990; Molinari et al., 1992; Baroni, de Gi-
roncoli, and Giannozzi, 1990; Rossi et al., 1993). Some-
what surprisingly, the mass approximation does not
seem to be valid when the interatomic force constants
for a well-known and widely used model, the bond-
charge model (BCM), are employed. A six-parameter
bond-charge model for GaAs that gives dispersions
comparing favorably with experiments and ab initio cal-
culations, yields, when used in the mass approximation,
AlAs dispersions quite different from first-principles re-
sults. This clearly shows that information on the vibra-
tional frequencies alone is not sufficient to fully deter-
mine the force constants, even when complete phonon
dispersions are experimentally available. In order to ob-
tain more realistic dispersions for AlAs in the mass ap-
proximation, one has to fit the bond-charge model for
GaAs to both frequencies and at least a few selected
eigenvectors (Colombo and Giannozzi, 1995).

b. II-VI semiconductors
The II-VI zinc-blende semiconductors ZnSe, ZnTe,

CdSe, and CdTe present some additional difficulties in a
plane-wave-pseudopotential (PP-PW) framework with
respect to their III-V or group-IV counterparts. The cat-
ion d states are close in energy to the s valence states so
that the d electrons should be included among the va-
lence electrons. Phonon calculations performed several
years ago, when the inclusion of localized d states in the
pseudopotential was difficult, showed that the effects of
cation d electrons could also be accounted for by includ-
ing the d states in the core and by using the nonlinear
core-correction approximation. The results showed an
accuracy comparable to that previously achieved for el-
emental and III-V semiconductors (Dal Corso, Baroni
et al., 1993). Similar calculations have been more re-
cently performed for hexagonal (wurtzite structure) CdS
(Debernardi et al., 1997; Zhang et al., 1996) and CdSe
(Widulle, Kramp et al., 1999) and compared with the re-
sults of inelastic neutron scattering experiments.

FIG. 1. Calculated phonon dispersions and densities of states
for binary semiconductors GaAs, AlAs, GaSb, and AlSb: !,
experimental data. From Giannozzi et al., 1991.
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sions over the entire Brillouin zone allows the calcula-
tion of the electron-phonon (Eliashberg) spectral
function !2F(") and of the mass enhancement param-
eter # that enters the MacMillan equation for the tran-
sition temperature Tc to superconductivity. Other im-
portant quantities that can be calculated are the
transport spectral function ! tr

2 F(") and the # tr coeffi-
cients, which determine the electrical and thermal resis-
tivity in the normal state. In simple metals, calculations
of # and !2F(") have been performed for Al, Pb, and
Li (Liu and Quong, 1996); for Al, Cu, Mo, Nb, Pb, Pd,
Ta, and V (Savrasov and Savrasov, 1996); and for Al,
Au, Na, and Nb (Bauer et al., 1998). Transport spectral
functions and coefficients (Savrasov and Savrasov, 1996;
Bauer et al., 1998) and phonon linewidths due to
electron-phonon coupling (Bauer et al., 1998) have also
been calculated. Figure 5 shows the results of Savrasov
and Savrasov, 1996 for !2F(").

The calculation of electron-phonon coefficients found
a remarkable application, beyond simple metals, in the
study of the behavior of molecular solids S, Se, and Te
under pressure. With increasing pressure, these trans-
form first to a base-centered orthorhombic supercon-
ducting structure, followed by a rhombohedral $-Po
phase, and finally for Se and Te by a bcc phase.

At the phase transition between the $-Po and the bcc
phase, a jump is observed in Tc in Te. The origin of this

jump was clarified (Mauri et al., 1996) through the study
of phonon dispersions and of the electron-phonon inter-
actions. The phonon contribution to the free energy was
shown to be responsible for the difference in the struc-
tural transition pressure observed in low- and room-
temperature experiments.

In S, the $-Po phase is predicted to be followed by a
simple cubic phase that is stable over a wide range of
pressures (280 to 540 GPa), in contrast to what is ob-
served in Se and Te. The calculated phonon spectrum
and electron-phonon coupling strength (Rudin and Liu,
1999) for the lower-pressure $-Po phase is consistent
with the measured superconducting transition tempera-
ture of 17 K at 160 GPa. The transition temperature is
calculated to drop below 10 K upon transformation to
the predicted simple cubic phase.

3. Oxides

Oxides present a special interest and a special chal-
lenge for anyone interested in phonon physics. On the
one hand, many very interesting materials, such as fer-
roelectrics and high-Tc superconductors, are oxides. On
the other hand, good-quality calculations on oxides are
usually nontrivial, both for technical and for more fun-
damental reasons. In a straightforward PW-PP frame-
work, the hard pseudopotential of oxygen makes calcu-
lations expensive: the use of ultrasoft pseudopotentials
is generally advantageous. The LDA is known to be in-
sufficiently accurate in many cases (and sometimes the

FIG. 3. Calculated phonon dispersions for fcc simple metal Al
and Pb and for the bcc transition metal Nb: solid lines, 0.3 eV
smearing width; dashed line 0.7 eV, smearing width; !, experi-
mental data. From de Gironcoli, 1995.

FIG. 4. Calculated phonon dispersions in magnetic transition
metals. Upper panel, bcc Fe. Solid lines, calculated GGA pho-
non dispersions; ", inelastic neutron scattering data; dotted
lines, dispersions calculated within local spin- density approxi-
mation (LSDA). Lower panel, Ni. Solid lines, calculated GGA
phonon dispersions; ", inelastic neutron scattering data; dot-
ted lines, calculated LSDA dispersions. From Dal Corso and
de Gironcoli, 2000.
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FIG. 1: (Color online) Momentum dependence of the d-
dimensional static response functions, F (q) = ��(q,! = 0),
corresponding to zero energy transfer, ! = 0. Here, momenta
are expressed in rescaled units, i.e. in units of the Fermi mo-
mentum, kF .

or

~2
2m

F (q) = 2

Z

kkF

ddk

(2⇡)d

⇣ 1

q

2 + 2k · q +
1

q

2 � 2k · q

⌘
.

(4.3)
Using rescaled coordinates, i.e. by letting k ! k/kF , we
obtain

F (q) =
2kdF
✏F

Z

k1

ddk

(2⇡)d
2q2

q

4 � 4(k · q)2 . (4.4)

We will discuss now the three-dimensional realizations of
the static response function corresponding to d = 1, 2
and 3. We have:

• d = 3 case: We have

F

3

(q) =
k

3

F

⇡

2

✏F

Z
1

0

k

2 dk

Z
1

�1

dµ

q

2 � 4k2µ2

=
N

3

✏F

3

2q

Z
1

0

k dk log
���
q + 2k

q � 2k

��� ,

which gives

F

3

(q) =
N

3

✏F

3

4

h
1 +

1� ( 1
2

q)2

q

log
���
1 + 1

2

q

1� 1

2

q

���
i
. (4.5)

• d = 2 case: We have

F

2

(q) =
k

2

F

⇡

2

✏F

Z
1

0

k dk

Z
2⇡

0

d�

q

2 � 4k2 cos2 �
. (4.6)

For q � 2, the above gives

F

2

(q > 2) =
N

2

✏F

4

q

Z
1

0

k dkp
q

2 � 4k2

=
N

2

✏F

⇣
1�

p
1� (2/q)2

⌘
, (4.7)

whereas for q < 2, we obtain

F

2

(q < 2) =
N

2

✏F

4

q

Z 1
2 q

0

k dkp
q

2 � 4k2
=

N

2

✏F
, (4.8)

Hence, we obtain:

F

2

(q) =
N

2

✏F

h
1 � ⇥(q � 2)

p
1� (2/q)2

i
. (4.9)

• d = 1 case: We have

F

1

(q) =
2kF
⇡✏F

Z
1

�1

dk

q

2 � 4k2
, (4.10)

which gives

F

1

(q) =
N

1

✏F

1

2q
log

���
1 + 1

2

q

1� 1

2

q

��� . (4.11)

In Fig. 1, we depict the momentum dependence of the
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We present a detailed study of the lattice dynamics and electron-phonon coupling for a (3,3) carbon
nanotube which belongs to the class of small diameter based nanotubes which have recently been
claimed to be superconducting. We treat the electronic and phononic degrees of freedom completely by
modern ab initio methods without involving approximations beyond the local density approximation.
Using density functional perturbation theory we find a mean-field Peierls transition temperature of
! 240 K which is an order of magnitude larger than the calculated superconducting transition
temperature. Thus in (3,3) tubes the Peierls transition might compete with superconductivity. The
Peierls instability is related to the special 2kF nesting feature of the Fermi surface. Because of the
special topology of the (n; n) tubes we also find a phonon softening at the ! point.
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During the past ten years carbon nanotubes have
gained a lot of attention [1]. This is due to their potential
for applications (e.g., for molecular electronics) as well as
to the fact that they allow the study of electronic systems
in one dimension. Thus, they offer the opportunity to
investigate effects like Peierls transition, superconductiv-
ity, electron-phonon interaction, and the interplay be-
tween them in a low-dimensional system. Despite the
great interest in these materials, progress has been hin-
dered until recently due to the difficulty of producing
carbon nanotubes with well-defined radii as well as due
to the difficulty to determine in detail the structure of
nanotubes present in a given sample. Recently, however,
very promising progress in identifying the structure of
nanotubes has been made by combining Raman and pho-
toluminescence measurements [2]. Size selection has
been also achieved in certain cases. For example, growing
nanotubes in zeolite crystals has made it possible to
produce tubes with a very narrow radii distribution [3]
thus allowing for a detailed comparison with modern
density functional theory (DFT) based calculations [4–
6]. Recently, superconductivity has been reported for
nanotubes with radii of 4 "A [7]. This immediately raises
the question as to the origin of superconductivity, the
importance of Peierls distortions, and of electron-
electron correlations. Dealing with electron-lattice and
strong electron-electron interaction in a materials spe-
cific way from ab initio methods has not been possible so
far even for much simpler systems than nanotubes. Thus,
in the past either one had to restrict oneself to model
studies of the electron-electron aspect [8] or study the
electron-lattice interaction with correlations taken into
account only on the level of local density approximation
(LDA) based functionals [9,10].

In the latter case, however, modern DFT-based meth-
ods allow for the parameter free microscopic calculation
of phonon modes. So far, for nanotubes this scheme has

been used nearly exclusively for the determination of
Raman active modes. The results are generally in good
agreement with available Raman data, thus emphasizing
the reliability of this approach. Calculation of the full
phonon dispersion for a given nanotube is a much more
elaborate task. Based on supercell calculations the phonon
dispersion for a small number of tubes could be deter-
mined recently [6,10]. This approach, however, has a
certain disadvantage if one is interested in phonon
anomalies and electron-phonon coupling. Anomalies
show up in most cases at phonon wave vectors which
are not commensurable with the underlying lattice, thus
even for approximate treatments, huge supercells would
be needed to study, for example, a Peierls transition by
this method. Only in very favorable cases, these anoma-
lies appear at high-symmetry points and can be dealt
with accurately by the supercell approach (as, e. g., for
graphite [10,11]). Also the calculation of superconducting
properties in the framework of the Eliashberg theory
requires a detailed knowledge of the phonon dispersion
over the whole Brillouin zone (BZ). Especially systems
which show phonon anomalies require usually a very
dense mesh of phonon wave vectors which can not be
obtained with supercell methods. The calculations get
even more demanding if the phonon anomalies are related
to special nesting features of the Fermi surface. Since in
one-dimensional systems the Fermi surface consists only
of isolated points, the most extreme case for nesting
properties is reached here. This requires also a very dense
k-point mesh for calculating the electronic band structure
and wave functions. Already, for simple systems like
graphene and graphite, this effect can be seen easily. It
is reflected in the high sensitivity of certain phonon
modes at the K point to sampling effects of the Fermi
surface as reported recently [10,11].

An alternative method is offered by using density func-
tional perturbation theory (DFPT) which allows for the
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calculation of phonon modes at arbitrary wave vectors
without relying on large supercells [12]. Using this ap-
proach we have studied in detail the complete lattice
dynamics and electron-phonon interaction for a (3,3)
nanotube. This belongs to the class of small-radii tubes
which have been reported to be superconducting. Our
Letter will try to answer the question whether or not
electron-phonon coupling can explain superconductivity
in this tube. A special complication arises from the Peierls
instability which has to show up in all one-dimensional
metallic systems. However, this has not received much
attention in the past since general belief was that the
mean-field Peierls transition temperature for nanotubes
is always very low so that it is of no practical conse-
quence. These arguments are based on information from
graphite using the folding concept [1]. However, this
approach breaks down for tubes with small diameter
which is seen, e.g., in the prediction of the wrong ground
state for small-radii nanotubes [4,13]. Recently an ap-
proximate treatment of the lattice dynamics for (5,0),
(6,0), and (5,5) tubes has been presented which showed
for (5,0) tube, indeed, that the estimated transition tem-
perature is of the order of 160 K and thus not negligible
[14]. However this approach was based on a nonselfcon-
sistent tight-binding scheme and did use only an approxi-
mate treatment of the polarization eigenvectors; thus
results might be questioned.

In contrast, our DFT-based method allows for a con-
sistent calculation of electronic states, phonon modes and
electron-phonon coupling without introducing approxi-
mations beyond the LDA level. In this Letter we present
fully ab initio results for phonon dispersion and eigenvec-
tors as well as for the electron-phonon coupling for the
(3,3) nanotubes using a well-tested norm-conserving
pseudopotential of Hamann-Schlüter-Chiang type [15].
We use DFPT in the mixed-basis pseudopotential formal-
ism [16] which has been successfully applied to study
electron-phonon-mediated superconductivity [17,18]. As
basis functions localized 2s and 2p functions are used
together with plane waves up to an energy cutoff of 20 Ry.
For integration over the BZ, a Gaussian broadening
scheme is employed. As test of the reliability of our
phonon approach we have calculated the phonon disper-
sion for graphene. Comparison with results published
recently show excellent agreement among the different
calculations except for the highest mode at the K point
which is very sensitive to k-point mesh and broadening as
already mentioned [10,11].With a very dense k-point mesh
of 5184 points in the BZ we found still a fluctuation of
1.5 meV for the highest mode when going from a broad-
ening of 0.05 to 0.2 eV. The authors of Ref. [10] tried to
avoid the complications due to very dense k-point sam-
pling by increasing the broadening; however, for studying
instabilities due to Fermi surface nesting that is not a
practical way since any instability will be broadened
substantially. Thus, one of the complication for the cal-

culations for the nanotube is the requirement of a very
dense k-point mesh and a small broadening.

Our calculations for the (3,3) nanotubes were done in a
supercell geometry so that all tubes are aligned on a
hexagonal array with a closest distance between adjacent
tubes of 10 !A. The tube-tube interactions are very small
[4]. We used 129 k points in the irreducible part of the BZ
and a broadening of 0.2 eV. The structure was fully
relaxed and the optimal geometry agreed very well with
those given in Refs. [4,5]. The phonon calculation was
carried out with the DFPT method. For calculation of the
electron-phonon matrix elements we even used up to
1025 k points. In Fig. 1 we have plotted the band structure
close to the Fermi energy and for comparison also the
band structure as obtained by using the folding method.
Our results agree well with those obtained previously
[4,5]. At k ! kF ! 0:284 (in units of 2!=a, where a is
the lattice constant of the graphene honeycomb lattice)
we see that two bands are crossing "F. This special
feature which holds for all (n; n) tubes is important for
phonon anomalies seen at the " point, as will be empha-
sized later. The dispersion differs most notably from those
obtained by using the folding technique by a shift of the
kF value and a change in slope of the two bands crossing
at "F. This has of course drastic consequences for the
phonon modes.

Phonon results are shown in Fig. 2. Again we have
plotted folding results together with the ab initio disper-
sion curves. These ab initio results were obtained by
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FIG. 1. Calculated band structure of the (3,3) nanotube.
Compared are results obtained (a) from the calculated graphene
band structure using the folding method, and (b) for the true
nanotube geometry.
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Fourier interpolation on a 16-point grid. The electronic
wave functions were obtained from a calculation with a
broadening width of 0.2 eV. In general, the ab initio
phonon frequencies are softer than the folding results.
Furthermore, near q ! 2kF one sees phonon anomalies in
certain phonon branches as well as a certain softening at
the ! point which is not present in the dispersion obtained
by folding. The !-point softening has been seen and
studied already for the G band in Refs. [9,10]. However,
this effect is also present in another mode at " 90 meV
with the same symmetry. It is related to the fact that these
!-point phonons couple the two electronic bands crossing
right at kF (Fig. 1), leading to a nesting vector q ! 0.
Therefore, this softening also indicates an underlying
Peierls instability; however, the corresponding Peierls
distortion does not change the lattice periodicity. Note
that in our DFPT approach, the calculations of phonons
include all screening effects due to lattice distortions in
contrast to other treatments like, e.g., tight-binding meth-
ods (see Ref. [14]).

To study the anomalies near q ! 0 and q ! 2kF in
more detail we have increased the number of k points
and reduced the broadening from 0.2 to 0.025 eV. This can
be interpreted as a variation of the electronic temperature
from 1096 to 137 K. With finer sampling and reduced

temperature one of the modes with the anomalous behav-
ior at q ! 2kF gets unstable. Results for Tel ! 137 K are
shown in Fig. 3. Here only those modes which are sensi-
tive to the temperature variation are shown. The modes
which show anomalous behavior at the ! point stay stable
for all temperatures studied but should eventually go soft
at low enough temperatures. The Peierls transition tem-
perature TP is defined by !2kF #TP$ ! 0. This leads im-
mediately to a lower limit of 137 K for TP which is of
similar magnitude as the value given for a (5,0) tube in
Ref. [14]. It is important to note that, contrary to early
estimates of TP for nanotubes of the order of 1 K [19], this
temperature is of sizeable magnitude and, thus, the Peierls
instability might compete with the superconducting
transition.

To investigate the possibility of phonon-induced
superconductivity, we have calculated the microscopic
electron-phonon coupling parameters, which are central
to the Eliashberg theory of strong-coupling superconduc-
tivity. The coupling constant for a phonon mode q! is
given by

!q! ! 2

"hN#"F$!q!

X
k##0

jgq!k%q#0;k#j2$#"k#$$#"k%q#0$; (1)

where N#"F$ is the density of states at the Fermi energy
and all energies are measured with respect to "F. The
electron-phonon coupling matrix element is given by a

gq!k%q#0;k# / h%k%q#0 j$Vq!
eff j %k#i;

with $Vq!
eff being the change of the effective crystal

potential due to a phonon q! and j %k#> being the
electronic wave functions . Since this quantity is very
sensitive to k-point sampling we have used a grid of 1025
points. Because of the self-consistent determination of
$V, the matrix elements include all screening effects in
contrast to tight-binding approaches. Because the Fermi
surface consists only of the points k ! &kF, contri-
butions to the total electron-phonon coupling constant
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FIG. 2 (color online). Calculated phonon dispersion curves of
the (3,3) nanotube as obtained (a) by the folding method from
the graphene phonon dispersions and (b) for the true nanotube
geometry. The latter corresponds to a high effective tempera-
ture of 1096 K. The arrow indicates 2kF (folded back to the first
Brillouin zone).
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FIG. 3 (color online). Phonon dispersion curves for the two
symmetry classes which are affected by electron-phonon cou-
pling. Shown are results obtained on a fine q grid and for a
small effective temperature of 137 K.
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Kohn anomalies in quasi 2D systems: MgB2 
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We develop a first-principles scheme to calculate adiabatic and nonadiabatic phonon frequencies in the full
Brillouin zone. The method relies on the stationary properties of a force-constant functional with respect to the
first-order perturbation of the electronic charge density and on the localization of the deformation potential in
the Wannier function basis. This allows for calculation of phonon-dispersion curves free from convergence
issues related to Brillouin-zone sampling. In addition our approach justifies the use of the static screened
potential in the calculation of the phonon linewidth due to decay in electron-hole pairs. We apply the method
to the calculation of the phonon dispersion and electron-phonon coupling in MgB2 and CaC6. In both com-
pounds we demonstrate the occurrence of several Kohn anomalies, absent in previous calculations, that are
manifest only after careful electron- and phonon-momentum integration. In MgB2, the presence of Kohn
anomalies on the E2g branches improves the agreement with measured phonon spectra and affects the position
of the main peak in the Eliashberg function. In CaC6 we show that the nonadiabatic effects on in-plane carbon
vibrations are not localized at zone center but are sizable throughout the full Brillouin zone. Our method opens
perspectives in large-scale first-principles calculations of dynamical properties and electron-phonon interaction.
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I. INTRODUCTION

Electron-phonon !EP" interaction is responsible of many
important phenomena in solids. As an example, the tempera-
ture behavior of the electron relaxation time in metals is to a
great extent due to the scattering between carriers and atomic
vibrations1 such that finite-temperature transport is largely
ruled by the EP interaction. Similarly, the high-temperature
heat capacity in metals is enhanced by the increased elec-
tronic mass due to the interaction with lattice vibrations.2 In
metals, at low temperatures, EP coupling can generate a su-
perconducting state in which electrons move with no electri-
cal resistance.3 It also can increase the effective mass of the
carriers so much that the system is driven from a metallic to
an insulating state, as it happens in case of polaronic or
Peierls instabilities.4 Finally, the electron-phonon scattering
is often the largest source of phonon damping in phonon-
mediated superconductors.5

First-principles theoretical determination of the electron-
phonon coupling strength in solids requires the calculation of
the electronic structure, the vibrational properties, and the
electron-phonon coupling matrix elements. In state-of-the-art
electronic-structure calculations these quantities are obtained
using the adiabatic Born-Oppenheimer approximation6 and
density-functional theory !DFT" in the linear-response
approach.7–9

More specifically, within the Born-Oppenheimer approxi-
mation, the determination of phonon frequencies, that are
related to the real part of the phonon self-energy, requires the
calculation, in a self-consistent manner, of the variation in
the Kohn-Sham potential VSCF with respect to a static ionic
displacement u,7 namely,

"VSCF!r"
"u . As the displacement of the

ions is static, the obtained
"VSCF!r"

"u is real. Conversely, the
phonon linewidth, related to the imaginary part of the pho-
non self-energy, is obtained in a nonself-consistent procedure
using the electron charge density and the previously deter-

mined
"VSCF!r"

"u . The advantage of using a nonself-consistent
procedure to study phonon linewidth is mainly related to the
less expensive computational load with respect to a self-
consistent one. In addition, as recently demonstrated, inter-
polation schemes10,11 of the electron-phonon matrix elements
can be used to calculate the imaginary part of the phonon
self-energy on ultradense k-point grid.

It is however unclear to what extent this procedure of
calculating self-consistently the real part of the phonon self-
energy and nonself-consistently the imaginary part is actu-
ally correct. Indeed, the proper way of treating phonons
should be to consider a monochromatic time-dependent dis-
placement !at the phonon frequency #" and perform a time-
dependent self-consistent linear-response scheme. The result-
ing variation in the self-consistent potential

"VSCF!r,#"
"u would

then be a complex quantity. The real part of the resulting
phonon self-energy would then determine the phonon fre-
quencies while its imaginary part would lead to the phonon
linewidth. In this way, nonadiabatic !NA" !in the sense of
Ref. 12" dynamical phonon frequencies could be accessed.
Although feasible, in principle, this procedure would require
a full rewriting of the linear-response code including time
dependence and it would also be more expensive then a stan-
dard static linear-response calculation. Moreover, in the pres-
ence of Kohn anomalies and long-range force constants,
where extremely accurate k-point sampling of the Fermi sur-
face is needed to converge the phonon self-energy, the cal-
culation would be unfeasible.

Thus, it would be desirable to have a nonself-consistent
linear-response formulation to obtain both the real and
imaginary phonon self-energy, both within the adiabatic/
static and nonadiabatic/dynamic approximation. In this work
we develop a scheme to calculate nonself-consistently both
the real and the imaginary part of the phonon self-energy by
using a functional13 that is stationary with respect to the
variation in the self-consistent charge density. Our method
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are clearly found along !A using our new method but are
completely missed by standard Fourier interpolation.29 The
main differences with respect to previous calculations38,41,43

are: !1" a prominent softening !Kohn anomaly" of the two
E2g modes at q#0.25!K is seen. The Kohn anomaly is also
present along the !M high symmetry direction and in a cir-
cular region around the zone center. Its origin is due to an
in-plane nesting between the two " cylinders. This Kohn
anomaly could be probably inferred from previous
calculations5,38,43 on smaller k-points grids although the soft-
ening of the E2g modes in these works is weaker.

!2" A second Kohn anomaly, absent in previous
calculations,5,38,43 is present on the E2g and B1g modes along
the kz direction at q#0.8!A. This Kohn anomaly is due to
nesting between different cylinders along !A. As it can be

seen by the comparison with previously available experimen-
tal data in Fig. 3, its presence is confirmed by inelastic x-ray
scattering measurements of the phonon dispersion.5,44 The
data at q#0.8!A are indeed in disagreement with previous
phonon-dispersion calculation5,38,41,43,44 even if this disagree-
ment was overlooked in all previous publications.

!3" Overall the Wannier-interpolated phonon dispersion is
in better agreement against experiments with respect to the
linear-response calculated one. These differences point out
the need of having an ultradense k-point sampling of the
Brillouin zone not only for the electron-phonon coupling but
also for the phonon dispersion.

3. Electron-phonon coupling

Having interpolated the electron-phonon matrix elements
and the phonon frequencies it is possible to calculate the
phonon linewidth and the electron-phonon coupling with a
high degree of precision, eliminating source of errors coming
from insufficient k-point sampling.

In Fig. 4 the Wannier-interpolated Eliashberg function is
compared with previous calculations done with different ap-
proaches. There are two main improvements due to the better
k-point sampling.
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FIG. 3. !Color online" Top panel: Wannier-interpolated adiabatic
phonon dispersion !red line" compared to standard linear-response
calculations performed on selected points in the Brillouin zone
!black dots". Bottom panel: comparison between state-of-the-art
calculated phonon dispersion using Fourier interpolation !black
line" and Wannier interpolation !red line". Both interpolation
schemes start from the same linear-response calculation. Experi-
mental data in the bottom panel are from Ref. 5 !blue circles" and
from Ref. 44 !black circles". Electronic temperatures are in rydberg.
The acoustic sum rule is not applied. Interpolated branches are ob-
tained by connecting the points at which the interpolation has been
carried out in the order of increasing energy.
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FIG. 4. !Color online" Comparison of our Wannier-interpolated
MgB2 Eliashberg function with previous calculations. Kong et al.
!Ref. 38" used first-principles calculations and a particular treatment
for #qE2g

for q along !A. Bohnen et al. !Ref. 43" used linear-
response calculations while Choi et al. !Ref. 41" performed frozen-
phonon calculations. Finally Eiguren et al. !Ref. 11" used a different
implementation of Wannier interpolation on the electron-phonon
matrix elements with 403 k-points grid for electron momentum and
403 k-points grid for phonon momentum, but did not interpolate
phonon frequencies. In this work we Wannier interpolate both
electron-phonon coupling !using 803 k-points grid for electron mo-
mentum and 203 k-points grid for phonon momentum" and phonon
frequencies !using 303 k-points grid for electron momentum and
203 k-point grid for phonon momentum". The integrated #!$" from
our work is also shown in the bottom panel.
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FIG. 1 (color). Band structure of MgB2 with the B p character.
The radii of the red (black) circles are proportional to the B pz
(B px,y) character.

rather small MT spheres for Mg. For the LMTO calcula-
tions we used an atomic sphere of nearly the size of the
free Mg atom (up to 3.13aB!, and obtained, as expected,
a larger charge of 2.8 electrons. However less than 25%
of the charge has s character. The remaining charge of p,
d, and f character arises not from Mg electrons but rather
from the tails of the B p orbitals and contributions from
the interstitials. In fact, one can say that Mg is fully ion-
ized in this compound, however the electrons donated to
the system are not localized on the anion, but rather are
distributed over the whole crystal.

The resulting band structure can be easily understood in
terms of the boron sublattice. The character of the bands
is plotted in Fig. 1. We show only the B p character, since
other contributions near the Fermi level are very small.
Observe two B band systems: two bands are derived from
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FIG. 2 (color). Total density of states (DOS) and partial DOS
for the MgB2 compound. The small Mg DOS is partially due
to the small rMT of 1.8aB used.

B pz states and four from B px,y . All these bands are
highly dispersive (light), the former being quite isotropic
and the latter more two dimensional. Both pz bands cross
the Fermi level (in different parts of the Brillouin zone),
but only two bonding px,y bands do so, and only near the
G point. They form two small cylindrical Fermi surfaces
around the G-A line (Fig. 3). However, due to their 2D
character, they contribute more than 30% to the total N"0!.

In contrast, the pz bands have 3D character, since the
smaller intraplane distance compensates for a smaller
(ppp vs pps) hopping. In the nearest neighbor tight
binding (TB) model their dispersion is ´k ! ´0 1 2tpps 3
cosckz 6 tppp

p
3 1 2 cosa1k 1 2 cosa2k 1 2 cosa3k

where a1,2,3 are the smallest in-plane lattice vectors. The
on-site parameter ´0 can be found from the eigenvalue at
the K point and is #1.5 eV above the Fermi energy. We
estimated tpps and tppp from the LMTO calculations as
#2.5 and #1.5 eV, respectively. This model gives a very
good description of the pz band structure near and below
the Fermi level, although the antibonding band acquires
some additional dispersion by hybridizing with the Mg p
band. The role of Mg in forming this band structure can
be elucidated by removing the Mg atoms from the lattice
entirely and repeating the calculations in this hypothetical
structure. The in-plane dispersion of both sets of bands at
and below the Fermi level changes very little (ppp bands
are hardly changed, while the pps in-plane dispersion
changes by #10%). The kz dispersion of the pz bands is
increased in MgB2 as compared with the hypothetical empty
B2 lattice by about 30%, and these bands shift down with
respect to the px,y bands by approximately 1 eV. This
shift, as well as the additional dispersion, comes mainly
from the hybridization with the empty Mg s band, which
is correspondingly pushed further up, increasing the ef-
fective ionicity. Substantial kz dispersion of the pz bands

FIG. 3 (color). The Fermi surface of MgB2. Green and blue
cylinders (holelike) come from the bonding px,y bands, the blue
tubular network (holelike) from the bonding pz bands, and the
red (electronlike) tubular network from the antibonding pz band.
The last two surfaces touch at the K point.
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