Probing the interfacial band structure of BaTiO₃/La_{0.8}Sr_{0.2}MnO₃ multiferroic heterostructures with ARPES

<u>Federico Stramaglia</u>¹, Marius A. Husanu², Fatima Alarab¹, Vladimir N. Strocov¹, Frithjof Nolting¹, Carlos A. F. Vaz¹

¹ Paul Scherrer Institut (PSI), Photon Science Division, CH-5232 Villigen PSI, Switzerland

² National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania

We have studied the interfacial band structure of BaTiO₃/ La_{0.8}Sr_{0.2}MnO₃ multiferroic heterostructures for two different ferroelectric polarizations of the BaTiO₃ film, with the goal to link the orbital occupancy with the variation in the magnetic properties in the La_{0.8}Sr_{0.2}MnO₃ layer. The ferroelectric polarization of the BaTiO₃ is determined by controlling the termination of the SrTiO₃ substrate and the heterostructures are characterized with transport and SQUID measurements, confirming the hole accumulation and depletion state of the La_{0.8}Sr_{0.2}MnO₃. We take advantage of soft x-ray angle resolved photoemission spectroscopy to probe the buried interfacial La_{0.8}Sr_{0.2}MnO₃ band structure; specifically, the $e_{g(z2-r2)}$ derived electron band and $e_{g(x2-y2)}$ hole bands are probed as we switch the ferroelectric polarization of the BaTiO₃ layer, changing the interfacial La_{0.8}Sr_{0.2}MnO₃ charge state from depletion to accumulation state.