Temperature dependent local inhomogeneity and local magnetic moment of $(Li_{1-x}Fe_x)OHFeSe$ superconductor

<u>G. Tomassucci¹</u>, L. Tortora¹, G.M. Pugliese¹ , F. Stramaglia^{1,2}, L. Simonelli³, C.

Marini³, K. Terashima^{4,5}, T. Wakita⁴, S. Ayukawa⁴, T. Yokoya⁴, K. Kudo⁶, M. Nohara⁷, T. Mizokawa⁸ & N.L. Saini¹

¹ Dipartimento di Fisica, Università di Roma "La Sapienza," P. le Aldo Moro 2, I-00185 Rome, Italy

² Microscopy and Magnetism Group, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland

³CELLS – ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Valles, Barcelona, Spain

⁴Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan (Times New Roman, 12pt, Italic)

⁵National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan ⁶Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

⁷Department of Quantum Matter, Hiroshima University, Hiroshima 739-8530, Japan ⁸Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

We have combined extended X-ray absorption fine structure (EXAFS) and X-ray emission spectroscopy (XES) to investigate the local structure and the local iron magnetic moments of $(Li_{1-x}Fe_x)OHFeSe$ (x~0.2) superconductors. The local structure, studied by Fe K-edge EXAFS measurements, is found to be inhomogeneous that is characterized by different Fe–Se bond lengths. The inhomogeneous phase exhibits a peculiar temperature dependence with lattice anomalies in the local structural parameters at the critical temperature T_c (36 K) and at the spin density wave (SDW) transition temperature T_N (130 K). Fe K β XES shows iron to be in a low spin state with the local Fe magnetic moment evolving anomalously as a function of temperature. Apart from a quantitative measurement of the local structure of (Li_{1-x}Fe_x)OHFeSe, providing direct evidence of nanoscale inhomogeneity, the results provide further evidence of the vital role that the coupled electronic, lattice and magnetic degrees of freedom play in the iron-based superconductors.

[1] G. Tomassucci et al., Physical Chemistry Chemical Physics, 25(9), 6684-6692 (2023).