Competing order in the 1144-type iron-based superconductors

S. Ishida¹, K. Iida², K. Munakata², A. Nakao², H. Fujihisa¹, Y. Gotoh¹, H.

Nakao³, A. Iyo¹, H. Ogino¹, <u>H. Eisaki¹</u>

¹AIST, Ibaraki 305-8568, Japan
²CROSS, Ibaraki 319-1106. Japan
³KEK, Ibaraki 305-0801. Japan

In Iron-based high- transition temperature (high- T_c) superconductors, various ordered phases exist in the vicinity of the superconducting phase. In typical materials, such as BaFe₂As₂ – based (122) and LaFeAsO -based (1111) systems, competing order shows up when their structures changes from tetragonal to orthorhombic, which stabilize stripe spindensity wave (SSDW) magnetic order. However, in CaKFe₄As₄, so-called 1144 type system, substitution of Fe for other transition metals TM (= Co, Ni) stabilizes the hedgehog-type antiferromagnetism (H-AFM) while maintaining the tetragonal crystal structure [1]. Since different ordered phases appear in this 1144 system, despite having similar crystal structures and constituent elements, a comparative study is important for elucidating the relationship between the superconductivity and the competing ordered phase.

In this study, we synthesized $Ca_{1-x}La_xKFe_4As_4$, in which out-of-plane Ca is substituted with La, and studied their physical properties. Here La substitution is expected to dope electrons as *TM* substitution without introducing disorder into Fe planes.

We have found that T_c decreases monotonically with La substitution. This behavior is quite different from that of 122-type Ba_{1-x}K_xFe₂As₂. Neutron diffraction results indicate that the magnetic order is also H-AFM type. The magnetic transition temperature T_N was found to be higher with La substitution compared with *TM* substitution. The possible origin for stabilizing H-AFM will be discussed.

[1] W. R. Meier, et al. npj Quantum Mater. 3, 5 (2018).[2] A. Kreyssig et al., Phys. Rev. B 97, 224521 (2018).