Janh-Teller polaron in the spin-orbit multipolar magnetic oxide Ba₂NaOsO₆ <u>Lorenzo Celiberti</u>^{1,2}, Dario Fiore Mosca^{1,4,5}, Giuseppe Allodi³, Leonid V. Pourovskii^{4,5}, Anna Tassetti², Paola Caterina Forino², Roberto De Renzi⁵, Vesna Mitrović⁶, Erick Garcia⁶, Rong Cong⁶, Patrick Woodward⁷, Samuele Sanna², and Cesare Franchini^{1,2} ¹ University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria ² Department of Physics and Astronomy 'Augusto Righi', Alma Mater Studiorum - Università di Bologna, Bologna, 40127 Italy ³Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy ⁴Centre de Physique Théorique, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France ⁵Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France ⁶Department of Physics, Brown University, Providence, Rhode Island 02912, USA ⁷Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA Complex oxides hosting 5d electrons present a variety of exotic phases arising from spin-orbital (SO) interactions and electronic correlation (EC) [1]. In the Mott insulator Ba_2NaOsO_6 , a canted antiferromagnet with multipolar interactions [2], strong EC together with Jahn-Teller (JT) lattice activity pave the way for bridging polarons and SO coupling, distinct quantum effects that play a critical role in charge transport and spin-orbitronics [3, 4]. Polarons are quasiparticles originating from strong electron-phonon interaction and are ubiquitous in polarizable materials, especially in 3d transition metal oxides [3]. Despite the more spatially delocalized nature of 5d electrons, we demonstrate the formation of Jahn-Teller spin-orbital polarons in electron doped $Ba_2Na_{1-x}Ca_xOsO_6$ by combining ab-initio calculations with nuclear magnetic resonance and muon spin rotation measurements. The polaronic charge trapping process converts the Os 5d¹ spin-orbital $J_{eff} = 3/2$ levels, characteristic of pristine BNOO, into a 5d² $J_{eff} = 2$ manifold, leading to the coexistence of different J-effective states in a single-phase material. Moreover, we suggest that polaron formation creates robust in-gap states that prevent the transition to a metal phase even at ultrahigh doping, thus preserving the Mott gap across the entire doping range from d¹ BNOO to d² Ba_2CaOsO_6 . ^[1] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Annual Review of Condensed Matter Physics 7, 195 (2016). ^[2] D. Fiore Mosca, L. V. Pourovskii, B. H. Kim, P. Liu, S. Sanna, F. Boscherini, S. Khmelevskyi, and C. Franchini, Physical Review B 103, 104401 (2021). ^[3] C. Franchini, M. Reticcioli, M. Setvin, and U. Diebold, Nature Reviews Materials, 1 (2021). ^[4] A. Soumyanarayanan, N. Reyren, A. Fert, and C. Panagopoulos, Nature **539**, 509 (2016).