The Electrodynamics Properties of Superconducting Nd_{0.8}Sr_{0.2}NiO₂ Nickelate

Rebecca Cervasio^{1*}, Luca Tomarchio^{2,3*}, Marine Verseils¹, Jean-Blaise Brubach¹, Salvatore Macis^{2,4}, Shengwei Zeng⁵, Ariando Ariando⁵, Pascale Roy¹, and Stefano Lupi^{2,3}

¹Synchrotron SOLEIL, LOrme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France

²Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.

³INFN section of Rome, P.Le Aldo Moro, 2, 00185 Rome, Italy.

⁴INFN - Laboratori Nazionali di Frascati, via Enrico Fermi 54, 00044, Frascati (Rome), Italy.

⁵Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Singapore

The intensive search for alternative non-cuprate high-transition-temperature (T_c) superconductors has taken a positive turn recently with the discovery of superconductivity in infinite-layer nickelates. This discovery is expected to be the basis for disentangling the puzzle behind the physics of high T_c in oxides. In the unsolved quest for the physical conditions necessary for inducing superconductivity, we report on a broad-band optical study of a Nd_{0.8}Sr_{0.2}NiO₂ film measured using optical and Terahertz spectroscopy, at temperatures above and below the critical temperature T_c ~ 13 K. The normal-state electrodynamics of Nd_{0.8}Sr_{0.2}NiO₂, can be described by a scattering time at room-T (τ =1.3 × 10⁻¹⁴ s) and a plasma frequency (ω_p =5500 cm⁻¹) in combination with an absorption band in the Mid-Infrared (MIR), characteristics of transition metal oxides, located around $\omega_0 \sim 2500$ cm⁻¹ and with an amplitude ω_{MIR} of about 8000 cm⁻¹. The degree of electronic correlation can be estimated using the ratio $\omega_p^2 / (\omega_p^2 + \omega_{MIR}^2)$. In the present system, this value is about 0.32 indicating a strong electron correlation in the NiO₂ plane with a similar strength as cuprates. From 300 K to 20 K, we observe a spectral weight transfer between the Drude and MIR band, together with a strong increase in the Drude scattering time, in agreement with DC resistivity measurements. Below T_c, a superconducting energy gap 2 $\Delta \sim$ 3.3 meV can be extracted from the Terahertz reflectivity using the Mattis-Bardeen model.