# $A$-site and B -site charge ordering in perovskite-type $\mathrm{PbCoO}_{3}$ 

Yuki Sakai ${ }^{1,2}$, Masaki Azuma ${ }^{2,1}$<br>${ }^{1}$ Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina 243-0435, Japan<br>${ }^{2}$ Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan

Charge degree of freedom in transition metals gives rise to various fascinating properties such as charge ordering associated with metal-insulator transition, high-temperature superconductivity, colossal magnetoresistance and high thermopower. Metal ions with halfinteger valence tend to split into two integer valence ions and these get spatially ordered as typically observed in $\mathrm{La} 0.5 \mathrm{Ca} 0.5 \mathrm{Mn}^{3.5+} \mathrm{O}_{3} .{ }^{1}$ To realize a half-integer valence state and charge ordering in the B site of a perovskite $\mathrm{ABO}_{3}$, it is generally necessary to mix two or more elements with different valences in the A site. Perovskite $\mathrm{PbCoO}_{3}$ synthesized at 12 GPa was found to have an unusual average charge distribution of $\mathrm{Pb}^{3.5+} \mathrm{Co}^{2.5+} \mathrm{O}_{3}$ with half-integer valences in both of A and B sites in spite of the simple chemical composition of $\mathrm{Pb}, \mathrm{Co}$, and O. Comprehensive studies using electron diffraction, synchrotron X-ray diffraction (SXRD), neutron powder diffraction (NPD), Hard X-ray photoemission spectroscopy, soft X-ray absorption spectroscopy and measurements of magnetic and electrical properties provide evidence of lead ion and cobalt ion charge ordering leading to $\mathrm{Pb}^{2+} \mathrm{Pb}^{4+}{ }_{3} \mathrm{Co}^{2+}{ }_{2} \mathrm{Co}^{3+}{ }_{2} \mathrm{O}_{12}$ quadruple perovskite structure. ${ }^{2}$ Moreover, a series of in situ high-pressure measurements including electrical transport, NPD, SXRD, emission, and absorption spectroscopies revealed the pressure-induced sequential spin state transition and intermetallic charge transfer in $\mathrm{PbCoO} 3 .{ }^{3}$ Here we show that half-integer valence states in both the A and B sites can be stabilized by tuning the energy levels of $\mathrm{Pb} 6 s$ and transition metal $3 d$ orbitals.
[1] P. G. Radaelli et al., Phys. Rev. B, 55, 3015-3023 (1997).
[2] Y. Sakai et al., J. Am. Chem. Soc., 139, 4574-4581 (2017).
[3] Z. Liu, Y. Sakai et al., J. Am. Chem. Soc., 142, 5731-5741 (2020).

