Una massa di 1 kg di liquido si trova inizialmente all'equilibrio con pressione $P_A=1$ atm, temperatura $T_A=80^{\circ}C$ e densità $\rho_A=972$ kg/m³. Il liquido subisce una compressione isoterma reversibile fino alla pressione $P_B=15$ atm. Assumendo costanti i coefficienti di espansione termica (6.41 10^{-4} K⁻¹) e compressibilità isoterma (46.1x 10^{-9} Pa⁻¹) si determini:

- 1) il volume iniziale e finale del liquido,
- 2) la variazione di entropia del liquido e dell'universo,
- 3) la variazione di energia interna del liquido,
- 4) il lavoro e il calore scambiati nel processo di compressione,
- 5) la variazione di entropia del liquido nel caso in cui la compressione sia irreversibile, Suggerimenti:
 - utilizzare le relazioni di Maxwell;
 - per semplificare i conti si può considerare il volume costante e pari alla media dei valori iniziale e finale.